Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (10): 1009-1017.DOI: 10.15541/jim20150060
• Orginal Article • Next Articles
LIU Jia-Qin1,2, WU Yu-Cheng2
Received:
2015-01-28
Revised:
2015-04-14
Published:
2015-10-20
Online:
2015-09-30
About author:
LIU Jia-Qin. E-mail:jqliu@hfut.edu.cn
Supported by:
CLC Number:
LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the High Performance BiOX(X=Cl, Br, I) Based Photo-catalysts[J]. Journal of Inorganic Materials, 2015, 30(10): 1009-1017.
Fig. 5 Morphology (a), optical absorption characteristic (b) and photocatalytic performance (c, d) of undoped and Mn-doped BiOCl particles under visible light irradiation[47]
[1] | HASHIMOTO K, IRIE H, FUJISHIMA A.TiO2 photocatalysis: a historical overview and future prospects.Jpn. J. Appl. Phys., 2005, 44(12): 8269-8285. |
[2] | KUMAR S G, DEVI L G.Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.J. Phys. Chem. A, 2011, 115(46): 13211-13241. |
[3] | DAGHRIR R, DROGUI P, ROBERT D.Modified TiO2 for environmental photocatalytic applications: a review.Ind. Eng. Chem. Res., 2013, 52(10): 3581-3599. |
[4] | ZHANG X, AN Z H, JIA F L, et al.Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres.J. Phys. Chem. C, 2008, 112(3): 747-753. |
[5] | AN H Z, DU Y, WANG T M, et al.Photocatalytic properties of BiOX (X = Cl, Br, and I).Rare Metals, 2008, 27(3): 243-250. |
[6] | CHANG X F, HUANG J, CHENG C, et al.BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance. Catal. Comm., 2010, 11(5): 460-464. |
[7] | HENLE J, SIMON P, FRENZEL A, et al.Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions.Chem. Mater., 2007, 19(3): 366-373. |
[8] | ZHOU L, WANG W Z, XU H L, et al.Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis.Chem. Eur. J., 2009, 15(7): 1776-1782. |
[9] | SAISON T, CHEMIN N, CHANÉAC C, et al. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light.J. Phys. Chem. C, 2011, 115(13): 5657-5666. |
[10] | KOHTANI S, KOSHIKO M, KUDO A, et al.Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator.Appl. Catal. B: Environ., 2003, 46(3): 573-586. |
[11] | TOKUNAGA S, KATO H, KUDO A.Selective preparation of monoclinic and tetragonal bivo4 with scheelite structure and their photocatalytic properties.Chem. Mater., 2001, 13(12): 4624-4628. |
[12] | TANG J W, ZOU Z G, YE J H. photocatalytic decomposition of organic contaminants by bi2wo6 under visible light irradiation.Catal. Lett., 2004, 92(1/2): 53-56. |
[13] | ZHANG C, ZHU Y F. synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalyst.Chem. Mater., 2005, 17(13): 3537-3545. |
[14] | FU H B, PAN C S, YAO W Q, et al.Visible-light-induced degradation of rhodamine b by nanosized Bi2WO6.J. Phys. Chem. B, 2005, 109(47): 22432-22439. |
[15] | YAO W F, WANG H, XU X H, et al.Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12.Mater. Lett., 2003, 57(13/14): 1899-1902. |
[16] | HOU D F, LUO W, HUANG Y H, et al.Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light- driven photocatalytic properties.Nanoscale, 2013, 5: 2028-2035. |
[17] | ZHANG K L, LIU C M, HUANG F Q, et al.Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst.Appl. Catal. B: Environ., 2006, 68(3/4): 125-129. |
[18] | PARE B, SARWAN B, JONNALAGADDA S B.The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J. Mol. Struct., 2012, 1007: 196-202. |
[19] | DENG H, WANG J W, PENG Q, et al.Controlled hydrothermal synthesis of bismush oxyhalide nanobelts and nanotubes.Chem. Euro. J., 2005, 11: 6519-6524. |
[20] | JIANG J, ZHAO K, XIAO X Y, et al.Synthesis and facet-dependent photoreactivity of biocl single-crystalline nanosheets.J. Am. Chem. Soc., 2012, 134(10): 4473-4476. |
[21] | ZHANG J, SHI F J, LIN J, et al.Self-Assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater., 2008, 20(9): 2937-2941. |
[22] | XIA J X, YIN S, LI H M, et al.Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid.Dalton Trans., 2011, 40: 5249-5258. |
[23] | XIAO X, ZHANG W D.Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem., 2010, 20: 5866-5870. |
[24] | SHI X J, CHEN X L, CHEN X, et al.Solvothermal synthesis of BiOI hierarchical spheres with homogeneous sizes and their high photocatalytic performance.Mater. Lett., 2012, 68: 296-299. |
[25] | CAO C B, LV R T, ZHU H S.Preparation of single-crystal BiOCl nanorods via surfactant soft-template inducing growth.J. Metastab. Nanocryst. Mater., 2005, 23: 79-82. |
[26] | SHANG M, WANG W Z, ZHANG L.Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template.J. Hazard. Mater., 2009, 167(1/2/3): 803-809. |
[27] | WANG C H, SHAO C L, LIU Y C, et al.Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning.Scripta Mater., 2008, 59(3): 332-335. |
[28] | PERERA S, ZELENSKI N A, PHO R E, et al.Rapid and exothermic solid-state synthesis of metal oxyhalides and their solid solutions via energetic metathesis reactions.J. Solid State Chem., 2007, 180(10): 2916-2925. |
[29] | 魏平玉, 杨青林, 郭林. 卤氧化铋化合物光催化剂. 化工进展, 2009, 21(9): 1734-1741. |
[30] | 王燕琴, 瞿梦, 冯红武, 等. 卤氧化铋光催化剂的研究进展. 化工进展, 2014, 33(3): 660-667. |
[31] | 张喜. 新型卤化氧铋BiOX(X=Cl、Br、I)光催化剂的合成、表征及催化性能研究. 武汉: 华中师范大学博士论文, 2010. |
[32] | HUANG W L, ZHU Q S.Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts. Comput. Mater.Sci., 2008, 43(4): 1101-1108. |
[33] | HUANG W L.Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations.J. Comput. Chem., 2009, 30(12): 1882-1891. |
[34] | HUANG W L, ZHU Q S.DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J. Comput. Chem., 2009, 30(2): 183-190. |
[35] | YE L Q, ZAN L, TIAN L H, et al.The {001} facets-dependent high photoactivity of BiOCl nanosheets.Chem. Commun., 2011, 47: 6951-6953. |
[36] | YE L Q, DENG K J, XU F, et al.Increasing visible-light absorption for photocatalysis with black BiOCl.Phys. Chem. Chem. Phys., 2012, 14: 82-85. |
[37] | ZHU L P, LIAO G H, BING N C, et al.Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization.Cryst. Eng. Comm., 2010, 12: 3791-3796. |
[38] | CHAI S Y, KIM Y J, JUNG M H, et al.Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst.J. Catal., 2009, 262(1): 144-149. |
[39] | SHAMAILA S, SAJJAD A K L, CHEN F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst.J. Colloid Interface Sci., 2011, 356(2): 465-472. |
[40] | KONG L, JIANG Z, LAI H H, et al.Unusual reactivity of visible- light-responsive AgBr-BiOBr heterojunction photocatalysts.J. Catal., 2012, 293: 116-125. |
[41] | ZHANG X, ZHANG L Z, XIE T F, et al.Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem.C, 2009, 113(17): 7371-7378. |
[42] | WANG W D, HUANG F Q, LIN X P. xBiOI-(1-x)BiOCl as efficient visible light driven photocatalysts.Scripta Mater., 2007, 56(8): 669-672. |
[43] | LIU Y Y, SON W J, LU J B, et al.Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light.Chem. Eur. J., 2011, 17(34): 9342-9349. |
[44] | CHEN H, CHEN S, QUAN X, et al.Structuring a TiO2-based photonic crystal photocatalyst with schottky junction for efficient photocatalysis.Environ. Sci. Technol., 2010, 44(1): 451-455. |
[45] | YU C L, CAO F F, SHU Q, et al.Preparation, characterization and photocatalytic performance of Ag/BiOX (X=Cl, Br, I) composite photocatalysts.Acta Phys-Chim. Sin., 2012, 28(3): 647-653. |
[46] | YU C L, CAO F F, LI G, et al.Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation.Sep. Purif. Technol., 2013, 120: 110-122. |
[47] | PARE B, SARWAN B, JONNALAGADDA S B.Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition.Appl. Surf. Sci., 2011, 258(1): 247-253. |
[48] | WANG R J, JIANG G H, WANG X H, et al.Efficient visible- light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Power Technol., 2012, 228: 258-263. |
[49] | ZHANG K, ZHANG D Q, LIU J, et al.A novel nanoreactor framework of iodine-incorporated BiOCl core-shell structure: enhancedlight-harvesting system for photocatalysis.Cryst. Eng. Comm., 2012, 14: 700-707. |
[50] | ZHANG X, ZHANG L Z.Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI.J. Phys. Chem. C, 2010, 114(42): 18198-18206. |
[51] | YE L Q, GONG C Q, LIU J Y, et al.Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets’s photocatalytic activity. J. Mater. Chem., 2012, 22: 8354-8360. |
[52] | LI K, TANG Y P, XU Y L, et al. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ., 2013, 140-141: 179-188. |
[53] | LIU Z S, WU B T, NIU J N, et al.Solvothermal synthesis of BiOBr thin film and its photocatalytic performance.Appl. Surf. Sci., 2014, 288: 369-372. |
[54] | YE L Q, CHEN J N, TIAN L H, et al. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl. Catal. B: Environ., 2013, 130-131:1-7. |
[55] | GRIMES C A.Synthesis and application of highly ordered arrays of TiO2 nanotubes.J. Mater. Chem., 2007, 17: 1451-1457. |
[56] | GRIMES C A, MOR G K.TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. Springer: Heidelberg, 2009: 129-146. |
[57] | CHEN X B, MAO S S.Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.Chem. Rev., 2007, 107: 2891-2959. |
[58] | 刘家琴. BiOX(X=Cl、I)/TiO2纳米复合阵列的可控构筑及其有机污染物降解性能研究. 合肥: 合肥工业大学博士学位论文, 2014. |
[59] | LIU J Q, RUAN L L, ADELOJU S B, et al.BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visble- light photoelectrocatalytic performance and stability.Dalton Trans., 2014, 43: 1706-1715. |
[60] | RUAN L L, LIU J Q, ZHOU Q, et al.A flake-tube structured BiOBr-TiO2 nanotube array heterojunction with enhanced visible light photocatalytic activity.New J. Chem., 2014, 38: 3022-3028. |
[1] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[2] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[5] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[6] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[7] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[8] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[9] | LI Yanran, XIE Dingdong, JIANG Jie. Bionic Research on Multistage Pain Sensitization Based on Ionic Oxide Transistor Array [J]. Journal of Inorganic Materials, 2023, 38(4): 429-436. |
[10] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[11] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[12] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[15] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||