Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (9): 897-905.DOI: 10.15541/jim20150123
• Orginal Article • Next Articles
ZHAI Ying-Jiao1, LI Jin-Hua1, CHU Xue-Ying1, XU Ming-Ze1, LI Xue1,2, FANG Xuan1,3, WEI Zhi-Peng3, WANG Xiao-Hua3
Received:
2015-03-11
Revised:
2015-04-24
Published:
2015-09-20
Online:
2015-08-19
About author:
ZHAI Ying-Jiao. E-mail: zhaiyingjiao0613@sina.com
Supported by:
CLC Number:
ZHAI Ying-Jiao, LI Jin-Hua, CHU Xue-Ying, XU Ming-Ze, LI Xue, FANG Xuan, WEI Zhi-Peng, WANG Xiao-Hua. Preparation and Application of Molybdenum Disulfide Nanostructures[J]. Journal of Inorganic Materials, 2015, 30(9): 897-905.
Fig. 2 (a) SEM images of a hollow MoS2 micro@nano- spheres[5]; (b) Rose-petal-shaped MoS2 hierarchical nanostructures[6]; (c) Core-shell MoO3-MoS2 nanowires[7]
Fig. 5 (a) Experimental setup of the chemically exfoliated MoS2 system[22]; (b) Schematic illustration of experimental setup for electrochemical exfoliation of bulk MoS2 crystal[23]; (c) AFM image of single-layer MoS2[24]; (d) Schematic representation of the synthesis procedure to obtain MoS2 quantum dots interspersed in MoS2 nanosheets[25]
Fig. 6 (a) Electrochemical/chemical method for synthesizing 2H-MoS2 nanoribbons[27] and (b) synthesis procedure and structural model for double-gyroid MoS2[28]
Fig. 8 (a) UV-Vis absorption spectra of a MB solution at room temperature in the presence of MoS2@SnO2 nanoflowers[37], (b) UV-Vis absorption spectra of MB solution in the presence of MoS2@ZnO nano-heterojunctions[38]
Fig. 9 (a) Schematic illustration of a MoS2/graphene heterojunction device[40] and (b) three-dimensional schematic view of the single-layer MoS2 photodetector[41]
Fig. 11 (a) Schematic illustration of colorimetric detection of glucose by using glucose oxidase (GOx) and MoS2 nanosheet[46], (b) schematic illustration of MoS2-IO-PEG in vivo photothermal therapy[47] and (c) schematic illustration of detection of DNA on MoS2-thionin electrochemical sensors[48]
Fig. 12 (a) Nyquist plots of the 3D hierarchical MoS2/PANI and MoS2/C nanoflowers[52], and (b) nyquist plots of the commercial MoS2 and the synthesized MoS2/OLC nano-urchins[53]The inset in (b) is the applied equivalent circuit
[1] | CONLEY H J, WANG B, ZIEGLER J I, et al.Bandgap engineering of strained monolayer and bilayer MoS2.Nano Letters, 2013, 13(8): 3626-3630. |
[2] | BHATTACHARYYA S, PANDEY T, SINGH A K.Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2.Nanotechnology, 2014, 25(46): 465701. |
[3] | MAK K F, LEE C, HONE J, et al.Atomically thin MoS2: a new direct-gap semiconductor.Physical Review Letters, 2010, 105(13): 13685. |
[4] | SHI Y M, ZHOU W, LU A Y, et al.Van der Waals epitaxy of MoS2 layers using graphene as growth templates.Nano letters, 2012, 12(6): 2784-2791. |
[5] | TAN Y H, YU K, YANG T, et al.The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties.J. Mater. Chem. C, 2014, 2: 5422-5430. |
[6] | ZHU H, DU M L, ZHANG M, et al.The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties.Journal of Materials Chemistry A, 2014, 2(21): 7680-7685. |
[7] | CHEN Z, CUMMINS D, REINECKE B N, et al.Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials.Nano Letters, 2011, 11(10): 4168-4175. |
[8] | WU Z Z, WANG D Z, LIANG X, et al.Novel hexagonal MoS2 nanoplates formed by solid-state assembly of nanosheets.Journal of Crystal Growth, 2010, 312(12): 1973-1976. |
[9] | LIN H T, CHEN X Y, Li H L, et al.Hydrothermal synthesis and characterization of MoS2 nanorods.Materials Letters, 2010, 64: 1748-1750. |
[10] | DEEPAK F L, MAYORAL A, YACAMAN M J.Faceted MoS2 nanotubes and nanoflowers.Materials Chemistry and Physics, 2009, 118(2): 392-397. |
[11] | YU Y, HUANG S Y, LI Y, et al.Layer-dependent electrocatalysis of MoS2 for hydrogen evolution.Nano Letters, 2014, 14(2): 553-558. |
[12] | DING S, ZHANG D, CHEN J S, et al.Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties.Nanoscale, 2012, 4(1): 95-98. |
[13] | CAI Y, YANG X, LIANG T, et al.Easy incorporation of single- walled carbon nanotubes into two-dimensional MoS2 for high- performance hydrogen evolution.Nanotechnology, 2014, 25(46): 465401. |
[14] | SU S, SUN H F, XU F, et al.Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles‐decorated MoS2 nanosheets modified electrode.Electroanalysis, 2013, 25(11): 2523-2529. |
[15] | MANNEBACH E M, DUERLOO K A N, PELLOUCHOUD L A, et al. Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions.ACS Nano, 2014, 8(10): 10734-10742. |
[16] | SHI J P, MA D L, HAN G F, et al.Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction.ACS Nano, 2014, 8(10): 10196-10204. |
[17] | ZHAN Y J, LIU Z, NAJMAEI S, et al.Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate.Small, 2012, 8(7): 966-971. |
[18] | LIU K K, ZHANG W, LEE Y H, et al.Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates.Nano Letters, 2012, 12(3): 1538-1544. |
[19] | KONG D, WANG H, CHA J J, et al.Synthesis of MoS2 and MoSe2 films with vertically aligned layers.Nano Letters, 2013, 13(3): 1341-1347. |
[20] | CAI G M, JIAN J K, CHEN X L, et al.Regular hexagonal MoS2 microflakes grown from MoO3 precursor.Applied Physics A, 2007, 89(3): 783-788. |
[21] | MCDONNELL S, ADDOU R, BUIE C, et al.Defect-dominated doping and contact resistance in MoS2.ACS Nano, 2014, 8(3): 2880-2888. |
[22] | EDA G, YAMAGUCHI H, VOIRY D, et al.Photoluminescence from chemically exfoliated MoS2.Nano Letters, 2011, 11(12): 5111-5116. |
[23] | LIU N, KIM P, KIM J H, et al.Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation.ACS Nano, 2014, 8(7): 6902-6910. |
[24] | YIN Z Y, LI H, LI H, et al.Single-layer MoS2 phototransistors.ACS Nano, 2011, 6(1): 74-80. |
[25] | GOPALAKRISHNAN D, DAMIEN D, SHAIJUMON M M.MoS2 quantum dots interspersed exfoliated MoS2 nanosheets.ACS Nano, 2014, 8(5): 5297-5303. |
[26] | MAIJENBURG A W, REGIS M, HATTORI A N, et al.MoS2 nanocube structures as catalysts for electrochemical H2 evolution from acidic aqueous solutions.ACS Applied Materials & Interfaces, 2014, 6(3): 2003-2010. |
[27] | LI Q, WALTER E C, VAM DER VEER W E, et al. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.The Journal of Physical Chemistry B, 2005, 109(8): 3169-3182. |
[28] | KIBSGAARD J, CHEN Z B, REINECKE B N, et al.Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.Nature Materials, 2012, 11(11): 963-969. |
[29] | MA C B, QI X, CHEN B, et al.MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction.Nanoscale, 2014, 6(11): 5624-5629. |
[30] | LIU H, SU X, DUAN C Y, et al.A novel hydrogen peroxide biosensor based on immobilized hemoglobin in3D flower-like MoS2 microspheres structure.Meterials Letters, 2014, 122: 182-185. |
[31] | LI G W, LI C S, TANG H, et al.Synthesis and characterization of hollow MoS2 microspheres grown from MoO3 precursors.Journal of Alloys and Compounds, 2010, 501(2): 275-281. |
[32] | ZHANG L, LOU X W D. Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage.Chemistry-A European Journal, 2014, 20(18): 5219-5223. |
[33] | LI Y G, WANG H L, XIE L M, et al.MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 2011, 133(19): 7296-7299. |
[34] | TANG G G, SUN J R, CHEN W, et al.Surfactant-assisted hydrothermal synthesis and tribological properties of flower-like MoS2 nanostructures.Micro & Nano Letters, 2013, 8(3): 164-168. |
[35] | RAPOPORT L, FLEISCHER N, TENNE R.Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites.J. Mater. Chem., 2005, 15(18): 1782-1788. |
[36] | YUWEN L H, XU F, XUE B, et al.General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation.Nanoscale, 2014, 6: 5762-5769. |
[37] | LI J Z, YU K, TAN Y H, et al.Facile synthesis of novel MoS2@SnO2 hetero-nanoflowers and enhanced photocatalysis and field-emission properties.Dalton Transactions, 2014, 43(34): 13136-13144. |
[38] | TAN Y H, YU K, LI J Z, et al.MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties.Journal of Applied Physics, 2014, 116(6): 064305. |
[39] | YOU X Q, LIU N, LEE C J, et al.An electrochemical route to MoS2 nanosheets for device applications.Materials Letters, 2014, 121: 31-35. |
[40] | KWAK J Y, HWANG J, CALDERON B, et al.Electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts.Nano Letters, 2014, 14(8): 4511-4516. |
[41] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al.Ultrasensitive photodetectors based on monolayer MoS2.Nature Nanotechnology, 2013, 8(7): 497-501. |
[42] | LI X, LI J H, WANG X H, et al.Preparation, applications of two-Dimensional graphene-like molybdenum disulfide.Integrated Ferroelectrics, 2014, 158: 26-42. |
[43] | RADISAVLJEVIC B, WHITWICK M B, KIS A.Integrated circuits and logic operations based on single-layer MoS2.ACS Nano, 2011, 5(12): 9934-9938. |
[44] | WANG H, YU L, LEE Y H, et al.Integrated circuits based on bilayer MoS2 transistors.Nano Letters, 2012, 12(9): 4674-4680. |
[45] | LOO A H, BONANNI A, AMBROSI A, et al.Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.Nanoscale, 2014, 6: 11971-11975. |
[46] | LIN T R, ZHONG L S, GUO L Q, et al.Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets.Nanoscale, 2014, 6(20): 11856-11862. |
[47] | LIU T, SHI S X, LIANG C, et al.Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy.ACS Nano, 2015, 9(1): 950-960. |
[48] | WANG T Y, ZHU R Z, ZHUO J Q, et al.Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors.Analytical Chemistry, 2014, 86(24): 12064-12069. |
[49] | XU X, FAN Z Y, DING S J, et al.Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.Nanoscale, 2014, 6(10): 5245-5250. |
[50] | LUO H, ZHANG L Z, YUE L.Synthesis of MoS2/C submicrosphere by PVP-assisted hydrothermal method for lithium ion battery.Advanced Materials Research, 2012, 531: 471-477. |
[51] | CHANG K, CHEN W X.L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries.ACS Nano, 2011, 5(6): 4720-4728. |
[52] | HU L R, REN Y M, YANG H X, et al.Fabrication of 3D hierarchical MoS2/Polyaniline and MoS2/C architectures for lithium-ion battery applications.ACS Applied Materials & Interfaces, 2014, 6(16): 14644-14652. |
[53] | WANG Y, XING G Z, HAN Z J, et al.Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.Nanoscale, 2014, 6: 8884-8890. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||