[1] JUSTIN J F, JANKOWIAK A. Ultra high temperature ceramics: densification, properties and thermal stability. The Onera Journal Aerospace Lab, 2011, 3: 1–11.
[2] KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications. Journal of Nuclear Materials, 2013, 441: 718–742.
[3] PIERRAT B, BALAT-PICHELIN M, SILVESTRONI L, et al. High temperature oxidation of ZrC-20% MoSi2 in air for future solar receivers. Solar Energy Materials & Solar Cells, 2011, 95: 2228–2237.
[4] SANI E, MERCATELLI L, FRANCINI F, et al. Ultra-refractory ceramics for high-temperature solar absorbers. Scripta Materialia, 2011, 65: 775–778.
[5] ZHANG S C, HILMAS G E, FAHRENHOLTZ W G. Zirconium carbide-tungsten cermets prepared by in situ reaction sintering. Journal of the American Ceramic Society, 2007, 90(6): 1930–1933.
[6] SONG G M, WANG Y J, ZHOU Y. The mechanical and thermophysical properties of ZrC/W composites at elevated temperature. Materials Science and Engineering A, 2002, 334: 223–232.
[7] LIDMAN W G, HAMJIAN H J. Reactions during sintering of a zirconium carbide-niobium cermet. Journal of the American Ceramic Society, 1952, 35(9): 236–240.
[8] SCHOENMAN L. 4000°F materials for low-thrust rocket engines. Journal of propulsion and power, 1995, 11(6): 1261–1267.
[9] SORRELL C C, STUBICAN V S, BRADT R C. Mechanical properties of ZrC-ZrB2 and ZrC-TiB2 directionally solidified eutectics. Journal of the American Ceramic Society, 1986, 69(4): 317–321.
[10] WU W W, ZHANG G J, KAN Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC composites at 1600℃. Journal of the American Ceramic Society, 2008, 91(8): 2501–2508.
[11] SILVESTRONI L, SCITI D, KLING J, et al. Sintering mechanisms of zirconium and hafnium carbides doped with MoSi2. Journal of the American Ceramic Society, 2009, 92(7): 1574–1579.
[12] SILVESTRONI L, SCITI D, BALAT-PICHELIN M, et al. Zirconium carbide doped with tantalum silicide: Microstructure, mechanical properties and high temperature oxidation. Materials Chemistry and Physics, 2013, 143: 407–415.
[13] ZHANG X H, QU Q, HAN J C, et al. Microstructural features and mechanical properties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Materialia, 2008, 59: 753–756.
[14] WU W W, ZHANG G J, KAN Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800℃. Journal of the American Ceramic Society, 2006, 89(9): 2967–2969.
[15] TSUCHIDA T, YAMAMOTO S. MA-SHS and SPS of ZrB2-ZrC composites. Solid State Ionics, 2004, 172: 215–216.
[16] YUNG D L, KOLLO L, HUSSAINOVA I, et al. Reactive sintering of ZrC-TiC composites. Key Engineering Materials, 2013, 527: 20-25.
[17] SILVESTRONI L, SCITI D. Microstructure and properties of pressureless sintered ZrC-based materials. Journal of Materials Research, 2008, 23(7): 1882-1889.
[18] HAN W B, WANG Z. Fabrication and oxidation behavior of a reaction derived graphite-ZrC composite for ultrahigh temperature applications. Materials Letters, 2009, 63: 2175–2177.
[19] 张立同 主编. 纤维增韧碳化硅陶瓷复合材料. 北京: 化学工业出版社, 2009: 10, 78.
[20] BARNIER P, BRODHAG C, THEVENOT F. Hot-pressing kinetics of zirconium carbide. Journal of Materials Science, 1986, 21(7): 2547–2552.
[21] ZHAO L, JIA D, DUAN X, et al. Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. International Journal of Refractory Metals and Hard Materials, 2011, 29: 516–521.
[22] MIN-HAGA E, SCOTT W D. Sintering and mechanical properties of ZrC-ZrO2 composites. Journal of Materials Science, 1988, 23(8): 2865–2870.
[23] 胡志毅. ZrB2-ZrC复合材料的制备及力学性能研究. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2012.
[24] LANDWEHR S E, HILMAS G E, FAHRENHOLTZ W G, et al. Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing. Materials Science and Engineering A, 2008, 497(1/2):79–86.
[25] LANDWEHR S E, HILMAS G E, FAHRENHOLTZ W G, et al. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets. Materials Chemistry and Physics, 2009, 115: 690–695.
[26] WANG X G, LIU J X, KAN Y M, et al. Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M=V, Nb, and Ta) additions. Journal of the European Ceramic Society, 2012, 32: 1795–1802.
[27] WANG X G, ZHANG G J, ZHAO J, et al. High-strength ZrC ceramics doped with aluminum. Journal of the American Ceramic Society, 2014, 97(11): 3367–3370.
[28] WANG X G, ZHANG G J, XUE J X, et al. Reactive hot pressing of ZrC–SiC ceramics at low temperature. Journal of the American Ceramic Society, 2013, 96(1): 32–36.
[29] KIM K H, SHIM K B. The effect of lanthanum on the fabrication of ZrB2-ZrC composites by spark plasma sintering. Materials Characterization, 2003, 50(1): 31–37.
[30] QU Q, HAN J C, HAN W B, et al. In situ synthesis mechanism and characterization of ZrB2-ZrC-SiC ultra high-temperature ceramics. Materials Chemistry and Physics, 2008, 110(2/3): 216–221.
[31] RANGARAJ L, DIVAKAR C, JAYARAM V. Reactive hot pressing of ZrB2-ZrCx ultra-high temperature ceramic composites with the addition of SiC particulate. Journal of the European Ceramic Society, 2010, 30(15): 3263–3266.
[32] GUO S, KAGAWA Y, NISHIMURA T. Tough hybrid ceramic- based material with high strength. Scripta Materialia, 2012, 67: 744–747.
[33] TOKITA M. Trends in advanced SPS spark plasma sintering systems and technology. Journal of the Society of Powder Technology Japan, 1993, 30(11): 790–804.
[34] GUO S Q, KAGAWA Y, TNISHIMURA T, et al. Mechanical and physical behavior of spark plasma sintered ZrC-ZrB2-SiC composites. Journal of the European Ceramic Society, 2008, 28(6): 1279–1285.
[35] GOUTIER F, TROLLIARD G, VALETTE S, et al. Role of impurities on the spark plasma sintering of ZrCx-ZrB2 composites. Journal of the European Ceramic Society, 2008, 28 (3): 671–678.
[36] GENDRE M, MAITRE A, TROLLIARD G. A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders. Acta Materialia, 2010, 58(7): 2598–2609.
[37] SCITI D, GUICCIARDI S, NYGREN M. Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scripta Materialia, 2008, 59(6): 638–641.
[38] JOHNSON W B, NAGELBERG A S, BREVA E. Kinetics of formation of a platelet-reinforced ceramic composite prepared by the directed reaction of zirconium with boron carbide. Journal of the American Ceramic Society, 1991, 74(9): 2093–2101.
[39] WOO S K, KIM C H. Fabrication and microstructural evaluation of ZrB2/ZrC/Zr composites by liquid infiltration. Journal of Materials Science, 1994, 29(20): 5309–5315.
[40] DICKERSON M B, SNYDER R L, SANDHAGE K H. Dense near net-shaped, carbide/refractory metal composites at modest temperatures by the displacive compensation of porosity (DCP) method. Journal of the American Ceramic Society, 2002, 85(3): 730–732.
[41] DICKERSON M B, WURM P J, SCHORR J R, et al. Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method. Journal of Materials Science, 2004, 39(19): 6005–6015.
[42] LIPKE D W, ZHANG Y, LIU Y, et al. Near net-shape/net- dimension ZrC/W-based composites with complex geometries via rapid prototyping and displacive compensation of porosity. Journal of the European Ceramic Society, 2010, 30(11): 2265–2277.
[43] ZHAO Y W, WANG Y J, ZHOU Y, et al. Ternary phase ZrxCuyCz in reactively infiltrated ZrC/W composite. Journal of the American Ceramic Society, 2011, 94(10): 3178–3180.
[44] SAYIR A. Carbon ?ber reinforced hafnium carbide composite. Journal of Materials Science, 2004, 39: 5995–6003.
[45] LOW I M, SAKKA Y, HU C F. MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments, 1st Edition. Hershey: Engineering Science Reference, 2013: 454.
[46] 赵丹. 耐超高温陶瓷先驱体及其复合材料的制备和性能研究. 长沙: 国防科学技术大学博士学位论文, 2011.
[47] LI Q, DONG S, WANG Z, et al. Microstructures and mechanical properties of 3D 4-directional, Cf/ZrC-SiC composites using ZrC precursor and polycarbosilane. Materials Science and Engineering B, 2013, 178(18): 1186–1190.
[48] 王其坤, 胡海峰, 陈朝辉. 先驱体转化法制备2D C/SiC-ZrC复合材料中ZrC含量对材料结构性能影响研究. 航空材料学报, 2009, 29(4): 72–76.
[49] ZHAO D, ZHANG C R, HU H F, et al. Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process. Ceramics International, 2011, 37(7): 2089–2093.
[50] Ceramics matrix composites.http://www.ultramet.com/ceramic_ matrix_composites.html[Eb/OL].2014-12-02.
[51] ZHU Y, WANG S, LI W, et al. Preparation of carbon fiber reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature. Scripta Materialia, 2012, 67(10): 822–825.
[52] ZHU Y, WANG S, CHEN H, et al. Fabrication of Cf/ZrC composites by infiltrating Cf/C performs with Zr-Cu alloys. Materials Letters, 2013, 108: 204–207.
[53] ZHU Y, WANG S, CHEN H, et al. Fabrication and characterization of 3-D Cf/ZrC composites by low-temperature liquid metal infiltration. Composites: Part B, 2014, 56: 756–761.
[54] CHEN S, ZHANG C, ZHANG Y et al. Influence of pyrocarbon amount in C/C preform on the microstructure and properties of C/ZrC composites prepared via reactive melt infiltration. Materials and Design, 2014, 58: 570-576.
[55] JIANG J, WANG S, LI W, et al. Preparation of 3D Cf/ZrC-SiC composites by joint processes of PIP and RMI. Materials Science and Engineering: A, 2014, 607(23): 334–340.
[56] TONG Y, BAI S, YE Y, et al. Reactive melt infiltration of a ZrB2 modified C/ZrC composite by a eutectic Zr-B alloy. Materials Letters, 2015, 138(1): 208–211.
[57] RANGARAJ L, SURESHA S, DIVAKAR C, et al. Low- temperature processing of ZrB2-ZrC composites by reactive hot pressing. Metallurgical and Materials Transactions A, 2008, 39A: 1496–1505.
[58] WANG X G, GUO W M, KAN Y M, et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives. Journal of the European Ceramic Society, 2011, 31:1103–1111.
[59] LANDWEHR S E, HILMAS G E, FAHRENHOLTZ W G. Processing of ZrC-Mo cermets for high temperature applications, part II: pressureless sintering and mechanical properties. Journal of the American Ceramic Society, 2008, 91(3): 873–878.
[60] BREVAL E. Microstructure of platelet-reinforced ceramics prepared by the directed reaction of zirconium with boron carbide. Journal of the American Ceramic Society, 1992, 75(8): 2139–2145.
[61] ZHANG S M, WANG S, ZHU Y L, et al. Fabrication of ZrB2-ZrC-based composites by reactive melt infiltration at relative low temperature. Scripta Materialia, 2011, 65(2): 139–142.
[62] PADMAVATHI N, KUMARI S, PRASAD V V B, et al. Processing of carbon-fiber reinforced (SiC+ZrC) mini-composites by soft-solution approach and their characterization. Ceramics International, 2009, 35(8): 3447–3454.
[63] LI H B, ZHANG L T, CHENG L F, et al. Fabrication of 2D C/ZrC-SiC composite and its structural evolution under high- temperature treatment up to 1800℃. Ceramics International, 2009, 35(7): 2831–2836.
[64] ZOU L, WALI N, YANG J M, et al. Microstructural characterization of a Cf/ZrC composite manufactured by reactive melt infiltration. International Journal of Applied Ceramic Technology, 2011, 8(2): 329–341.
[65] NATALIE ALICE WALI. Fundamental Study of a Refractory-based Carbon Fiber Reinforced Composite made by Reactive Melt Infiltration for Hypersonic Applications. Los Angeles: Doctoral Dissertation of University of California Los Angeles, 2011.
[66] ZOU L H, WALI N, YANG J M, et al. Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration. Journal of the European Ceramic Society, 2010, 30(6): 1527–1535.
[67] WANG D, WANG Y, RAO J, et al. Influence of reactive melt infiltration parameters on microstructure and properties of low temperature derived Cf/ZrC composites. Materials Science and Engineering: A, 2013, 568(15): 25–32.
[68] TONG Y, BAI S, CHEN K. C/C-ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration. Ceramics International, 2012, 38(7): 5723–5730.
[69] 张 鹏. 反应熔渗法制备Cf/(HfC+MC)复合材料机理及其性能研究. 长沙: 国防科学技术大学硕士学位论文, 2011.
[70] SUZUKI T, NOMURA N, YOSHIMI K, et al. 過共晶組織を有するMo-ZrC in-situ 複合材料の高温強度と室温靭性. [in Japanese] 日本金屬學會誌, 2000, 64(11): 1082–1088.
[71] GENDRE M, MA?TRE A, TROLLIARD G. Synthesis of zirconium oxycarbide (ZrCxOy) powders: Influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. Journal of the European Ceramic Society, 2011, 31: 2377–2385.
[72] ZHAO L Y, JIA D C, WANG Y J, et al. ZrC-ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing. Scripta Materialia, 2010, 63(8): 887–890.
[73] ZHU Y, WANG S, CHEN H, et al. Microstructure and mechanical properties of Cf/ZrC composites fabricated by reactive melt infiltration at relatively low temperature. Ceramics International, 2013, 39(8): 9085–9089.
[74] WANG Z, DONG S, ZHANG X, et al. Fabrication and properties of Cf/SiC-ZrC composites. Journal of the American Ceramic Society, 2008, 91(10): 3434–3436.
[75] CHEN S, ZHANG Y, ZHANG C, et al. Effects of SiC interphase by chemical vapor deposition on the properties of C/ZrC composite prepared via precursor infiltration and pyrolysis route. Materials and Design, 2013, 46: 497–502.
[76] ZHAO D, ZHANG C R, HU H F, et al. Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment. Composites Science and Technology, 2011, 71(11): 1392–1396.
[77] http://www.ultramet.com/ceramic_protective_coatings.html# refractory.
[78] FENG B, LI H, ZHANG Y, et al. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C-SiC-ZrC composites. Corrosion Science, 2014, 82: 27–35.
[79] PAUL A, JAYASEELAN D D, VENUGOPAL S, et al. UHTC composites for hypersonic applications. American Ceramic Society Bulletin, 2012, 91(1): 22B–29B.
[80] ZENG Y, XIONG X, LI G et al. Effect of fiber architecture and density on the ablation behavior of carbon/carbon composites modified by Zr-Ti-C. Carbon, 2013, 63: 92–100. |