Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (3): 225-232.DOI: 10.15541/jim20140346
• Orginal Article • Next Articles
FAN Long, LI Yu-Kun, CHEN Tao, LI Jin, YANG Zhi-Wen, YUAN Zheng, DENG Bo, CAO Zhu-Rong, HU Xin
Received:
2014-07-02
Revised:
2014-09-03
Published:
2015-03-20
Online:
2015-03-06
Supported by:
CLC Number:
FAN Long, LI Yu-Kun, CHEN Tao, LI Jin, YANG Zhi-Wen, YUAN Zheng, DENG Bo, CAO Zhu-Rong, HU Xin. Recent Progress in Research on CsI Thin Film Photocathodes[J]. Journal of Inorganic Materials, 2015, 30(3): 225-232.
Fig. 2 (a) SEM image of the CsI/ MgO/ MWCNTs/ Si photocathode[45]; (b) SEM image of the Si substrate patterned by colloidal lithography after lift-off process; (c)AFM image of the fresh CsI film evaporated on the Si patterned substrate; (d) AFM image of the CsI film on the Si patterned substrate exposed to ambient air for 24 h[41]
Fig. 3 SEM images of as-deposited (a), aged in ambient air (b) and extreme moisture exposed CsI films (c)[49]; Percent degradation in the yield signal of streak camera used at NIF from a 200 nm thick CsI cathode as a function of air exposure time[47]
Fig. 4 (a) AFM image of the 5 d UV-irradiated CsI photocathode[11]; (b) PEEM image of the 5 d UV-irradiated CsI photocathode[11]; (c) TEM image of the UV-irradiated CsI film[48]
[1] | FENG J, SHIN H J, NASIATKA J R, et al. An x-ray streak camera with high spatio-temporal resolution. Appl. Phys. Lett., 2007, 91(13): 134102-1-3. |
[2] | MOLNAR L.The ALICE HMPID detector ready for collisions at the LHC.Nucl. Instrum. Methods Phys. Res., Sect. A, 2008, 595(1): 27-30. |
[3] | NAPPI E.Trends in the development of large area photon detectors for Cherenkov light imaging applications.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 504(1/2/3): 70-87. |
[4] | WANG W, FANG Z H, JIA G, et al. Multispectral X-ray imaging with a multichannel Kirkpatrick-Baez microscope for imploded core temperature observation. The European Physical Journal D, 2014,68(5):129-1-5. |
[5] | XIE W Q, LI Y L, LI J, et al.Study of VUV Detector Based on Thinner THGEM for CDEX. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Anaheim, CA, 2012: 1127-1130. |
[6] | XIE Y G, ZHANG A W, LIU Y B, et al.Influence of air exposure on CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, 689: 79-86. |
[7] | TREMSIN A S, SIEGMUND O H. The Quantum Efficiency and Stability of UV and Soft X-ray Photocathodes. Proc. SPIE5920, Ultrafast X-Ray Detectors, High-Speed Imaging, and Applications, San Diego, USA, 2005: 592001-1-13. |
[8] | HOEDLMOSER H, BRAEM A, De CATALDO G, et al.Long term performance and ageing of CsI photocathodes for the ALICE/HMPID detector.Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, 574(1): 28-38. |
[9] | SINGH B K, TRILOKI, GARG P, et al.VUV-induced radiation ageing processes in CsI photocathodes studied by microscopy and spectroscopy techniques.Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 610(1): 350-353. |
[10] | SINGH B K, SHEFER E, BRESKIN A, et al.CsBr and CsI UV photocathodes: new results on quantum efficiency and aging.Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, 454(2/3): 364-378. |
[11] | SINGH B K, NITTI M A, VALENTINI A, et al.Ageing of CsI thin film photocathodes induced by UV photons.Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, 581(3): 651-655. |
[12] | BUZULUTSKOV A F.Gaseous photodetectors with solid photocathodes.Phys. Part. Nuclei, 2008, 39(3): 424-453. |
[13] | BRAEM A, DAVENPORT M, Di MAURO A, et al.Aging of large-area CsI photocathodes for the ALICE HMPID prototypes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 515(1): 307-312. |
[14] | PIUZ F.Ring Imaging CHerenkov systems based on gaseous photo-detectors: trends and limits around particle accelerators.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 502(1): 76-90. |
[15] | NAPPI E.CsI RICH detectors in high energy physics experiments.Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 471(1): 18-24. |
[16] | SCHYNS E.Status of large area CsI photocathode developments.Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, 494(1/2/3): 441-446. |
[17] | XIE Y G, LIU H B, ZHANG A W, et al.Quantum efficiency measurement of CsI photocathodes using synchrotron radiation at BSRF.Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, 664(1): 310-316. |
[18] | NITTI M A, NAPPI E, VALENTINI A, et al.Progress in the production of CsI and diamond thin film photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 553(1/2): 157-164. |
[19] | NITTI M A, VALENTINI A, SENESI G S, et al.Ion-beam sputtering deposition of CsI thin films.Applied Physics A, 2005, 80(8): 1789-1791. |
[20] | FAIRCHILD S B, BACK T C, MURRAY P T, et al. Low work function CsI coatings for enhanced field emission properties. J. Vac. Sci. Technol. A, 2011, 29(3): 031402-1-6. |
[21] | BRENDEL' V M, BUKIN V V, GARNOV S V, et al. Fabrication of alkali halide UV photocathodes by pulsed laser deposition.Quantum Electron., 2012, 42(12): 1128-1132. |
[22] | BUZULUTSKOV A, BRESKIN A, CHECHIK R.Heat enhancement of the photoyield from CsI, NaI and CuI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 366(2/3): 410-412. |
[23] | HOEDLMOSER H, BRAEM A, De CATALDO G, et al.Production technique and quality evaluation of CsI photocathodes for the ALICE/HMPID detector.Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, 566(2): 338-350. |
[24] | BRESKIN A.CsI UV photocathodes: history and mystery.Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, 371(1/2): 116-136. |
[25] | FRIESE J, GERNHÄUSER R, HOMOLKA J, et al. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating.Nucl. Instrum. Methods Phys. Res., Sect. A, 1999, 438(1): 86-93. |
[26] | VALENTINI A, NAPPI E, NITTI M A.Influence of the substrate reflectance on the quantum efficiency of thin CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, 482(1/2): 238-243. |
[27] | LU C, MCDONALD K T.Properties of reflective and semitransparent CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 343(1): 135-151. |
[28] | BOUTBOUL T, BRESKIN A, CHECHIK R, et al.On the surface morphology of thin alkali halide photocathode films.Nucl. Instrum. Methods Phys. Res., Sect. A, 1999, 438(2/3): 409-414. |
[29] | LI Y K, CHEN T, DENG B, et al. Energy spectral response of photocathode for soft X-ray streak camera. High Power Laser and Particle Beams, 2014, 26(02): 02202-1-4. |
[30] | YUAN Z, ZENG P, DENG B, et al. Spectral Sensitivity Calibration of Au and CsI Photocathodes of High Speed X-ray Scanning Camera. Proc. SPIE8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, Xiamen, China, 2012: 841921-1-6. |
[31] | ZENG P, YUAN Z, DENG B, et al.Spectral response calibration of Au and CsI transmission photocathodes of X-ray streak camera in a 60-5500 eV photon energy region. Acta Phys. Sin. 2012, 61(15): 379-385. |
[32] | BRAEM A, JORAM C, PIUZ F, et al.Technology of photocathode production.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 502(1): 205-210. |
[33] | LI M, NI Q L, CHEN B.Calculation of quantum efficiency of alkali halide photocathode materials in the extreme ultraviolet region.Acta Phys. Sin., 2009, 58(10): 6894-6901. |
[34] | LARRUQUERT J I, MENDEZ J A, AZNAREZ J A, et al.Optical properties and quantum efficiency of thin-film alkali halides in the far ultraviolet.Appl. Optics, 2002, 41(13): 2532-2540. |
[35] | GARAI B, RADHAKRISHNA V, RAJANNA K.Effect of vacuum treatment on CsI photocathode performance in UV photon detectors.Optical Materials Express, 2013, 3(7): 948-953. |
[36] | MAURO A D, MARTINENGO P, PIUZ F, et al.Study of the quantum efficiency of CsI photocathodes exposed to oxygen and water vapour.Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 461(1/2/3): 584-586. |
[37] | NITTI M A, CIOFFI N, NAPPI E, et al.Influence of bias voltage on the stability of CsI photocathodes exposed to air.Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, 493(1/2): 16-24. |
[38] | KUMAR K, ARUN P, KANT C R, et al.The effect of cesium metal clusters on the optical properties of cesium iodide thin films.Applied Physics A, 2010, 99(1): 305-310. |
[39] | KUMAR K, ARUN P, KANT C R, et al. Metal cluster’s effect on the optical properties of cesium bromide thin films. Appl. Phys. Lett., 2012, 100(24): 243106-1-7. |
[40] | TIAN J Q, JIANG D L, SUN X P, et al.Study on new MCP reflection X-ray sensitive film of variable density halide.Chinese Journal of Luminescence, 2002, 23(5): 513-517. |
[41] | NITTI M A, TINTI A, VALENTINI A, et al.Influence of the substrate surface texture on the photon-sensitivity stability of CsI thin film photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 610(1): 234-237. |
[42] | SHEFER E, BRESKIN A, BOUTBOUL T, et al.Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes.J. Appl. Phys., 2002, 92(8): 4758-4771. |
[43] | SINGH B K, NAPPI E, NITTI M A, et al.Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 502(1): 108-111. |
[44] | HALVORSON C, HOUCK T, MACPHEE A, et al. High energy photocathodes for laser fusion diagnostics. Rev. Sci. Instrum., 2010, 81(10): 10E309-1-3. |
[45] | LEE J, PARK T, LEE W, et al. Evaluation of a cesium iodide photocathode assisted with MgO-coated multiwall carbon nanotubes. Appl. Phys. Lett., 2010, 96(14): 141109-1-3. |
[46] | QIAN W J, LAI H W, PEI X Z, et al.Improving field emission by constructing CsI-AlN hybrid nanostructures.J. Mater. Chem., 2012, 22(35): 18578-18582. |
[47] | OPACHICH Y P, KALANTAR D H, MACPHEE A G, et al. High performance imaging streak camera for the National Ignition Facility. Rev. Sci. Instrum., 2012, 83(12): 125105-1-6. |
[48] | TREMSIN A S, RUVIMOV S, SIEGMUND O H W. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation.Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, 447(3): 614-618. |
[49] | FAN L, YANG Z W, CHEN T, et al. Influence of air exposure on the structure and properties of cesium iodide film. Acta Phys. Sin.2014, 14(63):146801-1-7. |
[50] | TRILOKI, DUTTA B, SINGH B K.Influence of humidity on the photoemission properties and surface morphology of cesium iodide photocathode.Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, 695: 279-282. |
[51] | KUMAR K, ARUN P, KANT C R, et al.The effect of cesium metal clusters on the optical properties of cesium iodide thin films.Applied Physics A, 2010, 99(1): 305-310. |
[52] | ALMEIDA J, BRAEM A, BRESKIN A, et al.Microanalysis surface studies and photoemission properties of CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 367(1/2/3): 337-341. |
[53] | BOUTBOUL T, AKKERMAN A, BRESKIN A, et al.Escape length of ultraviolet induced photoelectrons in alkali iodide and CsBr evaporated films: Measurements and modeling.J. Appl. Phys., 1998, 84(5): 2890-2896. |
[54] | TREMSIN A S, SIEGMUND O H.The Dependence of Quantum Efficiency of Alkali Halide Photocathodes on the Radiation Incidence angle. Proc. SPIE 3765, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, Denver, 1999: 441-451. |
[55] | BUZULUTSKOV A, BRESKIN A, CHECHIK R.Photoemission from CsI/LiF and CsI/NaF films, enhanced by exposure to water vapour.Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, 372(3): 572-574. |
[56] | SENESI G S, NITTI M A, VALENTINI A.A scanning electron and atomic force microscopy study of the surface morphology and composition of CsI films as affected by evaporation rate and humid-air exposure.Microsc. Microanal., 2005, 11(2): 124-132. |
[57] | NITTI M A, SENESI G S, LIOTINO A, et al.Influence of the film deposition rate and humidity on the properties of thin CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, 523(3): 323-333. |
[58] | TREMSIN A S, SIEGMUND O H W. UV radiation resistance and solar blindness of CsI and KBr photocathodes.IEEE Transactions on Nuclear Science, 2001, 48(3): 421-425. |
[59] | TREMSIN A S, PEARSON J F, NICHOLS A P, et al.X-ray-induced radiation damage in CsI, Gadox, Y2O2S and Y2O3 thin films.Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 459(3): 543-551. |
[60] | TREMSIN A S, SIEGMUND O H W. Quantum efficiency and stability of alkali halide UV photocathodes in the presence of electric field.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 504(1): 4-8. |
[61] | VA’VRA J. Physics and chemistry of aging-early developments.Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 515(1): 1-14. |
[62] | RUDOLF P, MARCHAL F, SPORKEN R, et al.Laterally resolved measurements of polycrystalline cesium iodide surfaces.Nucl. Instrum. Methods Phys. Res., Sect. A, 1997, 387(1/2): 163-170. |
[63] | TREMSIN A S, SIEGMUND O H W. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, 442(1/2/3): 337-341. |
[64] | LU C, MCDONALD K T.Properties of reflective and semitransparent CsI photocathodes.Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 343(1): 135-151. |
[65] | KAN T, MATSUMOTO K, SHIMOYAMA I.Nano-pattern Replication Using Parylene Thin Film for Optical Applications. Micro Electro Mechanical Systems, IEEE 20th International Conference on, Hyogo, 2007: 819-822. |
[66] | FEDOROV A, LEBEDINSKY A, MATEYCHENKO P.Dewetting behavior of CsI layers on LiF substrate.J. Cryst. Growth, 2011, 318(1): 595-598. |
[67] | THOMPSON C V.Solid-state dewetting of thin films.Ann. Rev. Mater. Res., 2012, 42: 399-434. |
[68] | YAO D L, GU M, LIU X L, et al.Performance of columnar CsI(Tl) scintillation films prepared on special pre-deposited layers.Appl. Surf. Sci., 2013, 276: 776-781. |
[69] | LIU J, ZHANG X S, DONG G Q, et al.The performances of silicon solar cell with core-shell pn junctions of micro-nano pillars fabricated by cesium chloride self-assembly and dry etching.Applied Physics A, 2014, 114(4): 1175-1179. |
[70] | WANG Y Y, GAO Y, WANG X M, et al.Fabrication and ultraviolet photoemission characteristics of novel Au photocathodes.High Power Laser and Particle Beams, 2013, 25(10): 2627-2630. |
[71] | GUO L, LI S W, ZHENG J, et al. A compact flat-response x-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV. Meas. Sci. Technol., 2012, 23(6): 065902-1-6. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||