Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (5): 461-469.DOI: 10.3724/SP.J.1077.2014.13471
• Review • Previous Articles Next Articles
DING Dong-Hai1,2, LUO Fa2, ZHOU Wan-Cheng2, SHi Yi-Min2, ZHOU Liang3
Received:
2013-09-17
Revised:
2013-11-08
Published:
2014-05-20
Online:
2014-04-24
About author:
DING Dong-Hai. E-mail:dingdongnwpu@qq.com
Supported by:
National Natural Science Foundation of China (51302206); Research Fund for the Doctoral Program of Higher Education of China(20126120120016); State Key Laboratory of Solidification Processing in NWPU (SKLSP201305); Scientific Research Program Funded by Shaanxi Provincial Education Department (2013JK0921, 2013JK0922, 2010JK643); Scientific Research Fund for Young Teachers of Puyang Refractories Education Sducation Scholarship
CLC Number:
DING Dong-Hai, LUO Fa, ZHOU Wan-Cheng, SHi Yi-Min, ZHOU Liang. Research Status and Outlook of High Temperature Radar Absorbing Materials[J]. Journal of Inorganic Materials, 2014, 29(5): 461-469.
Add to citation manager EndNote|Ris|BibTeX
[1] CHEN XUE-GANG, YE YING, CHENG JI-PENG. Recent progress in electromagnetic wave absorbers. Journal of Inorganic Materials, 2011, 26(5): 449–457.[2] LIU HAI-TAO, CHENG HAI-FENG, WANG JUN, et al. Review on high-temperature structural radar absorbing materials. Materials Review, 2009, 23(10): 24–27.[3] XIE WEI, CHENG HAI-FENG, KUANG JIA-CAI. Effect of heating rate on the complex permittivity of hollow-porous carbon fibers. Journal of Inorganic Materials, 2011, 26(9): 939–943.[4] XIE W, CHENG H F, CHU Z Y, et al. Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceramics International, 2011, 37(6): 1947–1951.[5] XIE W, CHENG H F, CHU Z Y, et al. Effect of carbonization time on the structure and electromagnetic parameters of porous-hollow carbon fibres. Ceramics International, 2009, 35(7): 2705–2710.[6] HUANG Z B, ZHOU W C, KANG W B, et al. Dielectric and microwave-absorption properties of the partially carbonized PAN cloth/epoxy–silicone composites. Composites: Part B, 2012, 43(8): 2980–2954.[7] DU Y C, WANG J Y, CUI C K, et al. Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synthetic Metals, 2010, 160(19/20): 2191–2196.[8] SUN LIANG-KUI, CHENG HAI-FENG, CHU ZENG-YONG, et al. Preparation and properties of C/SiO2 coaxial fibers. Journal of Inorganic Materials, 2009, 24(2): 310–314.[9] YAN JIA, CHU ZENG-YONG, CHENG HAI-FENG, et al. Microwave absorbing property of pre-oxidized PAN fibers carbonized in BCl3. Journal of Inorganic Materials, 2012, 27(8): 813–816.[10] ZHOU W, XIAO P, LI Y, et al. Dielectric properties of BN modified carbon fibers by dip-coating. Ceramics International, 2013, 39(6): 6569–6576.[11] ZHOU W, XIAO P, LI Y. Preparation and study on microwave absorbing materials of boron nitride coated pyrolytic carbon particles. Appl. Surf. Sci., 2012, 258(22): 8455–8459.[12] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3):788–796[13] KOU HUAMIN, ZHU YONG, CHEN MINGXIA, et al. Microwave absorbing performance of silica matrix composites reinforced by carbon nanotubes and carbon fiber. Int. J. Appl. Ceram. Technol., 2012, 10(2): 245–250.[14] WANG X Y, LUO F, YU X M, et al. Influence of short carbon fiber content on mechanical anddielectric properties of Cfiber/Si3N4 composites. Scripta Materialia, 2007, 57(4): 309–312.[15] LI X M, ZHANG L T, YIN X W. Synthesis, Electromagnetic reflection loss and oxidation resistance of pyrolytic carbon-Si3N4 ceramics with dense Si3N4. J. Eur. Ceram. Soc. 2012, 32(8): 1485–1489[16] FENG G Y, FANG X Y, WANG J J, et al. Effect of heavily doping with boron on electronic structures and optical properties of β-SiC. Physica B, 2010, 405(12): 2625–2631.[17] LIU H S, FANG X Y, SONG W L, et al. Modification of band gap of β-SiC by N-doping. Chinese Physics Letters, 2009, 26(6): 067101.[18] LI ZHI-MIN, SHI JIAN-ZHANG, WEI XIAO-HEI, et al. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Phys. Sin., 2012, 61(23): 237103.[19] DOU Y K, JIN H B, CAO M S, et al. Structural stability, electronic and optical properties of Ni-doped 3C–SiC by first principles calculation. Journal of Alloys and Componds, 2011, 509(20): 6117–6122.[20] LI ZHI-MIN, DU HONG-LIANG, LUO FA, et al. Study process of silicon carbide as high temperature microwave absorber. Rare Metal Material and Engineering, 2007, 36(Suppl.3): 96–99.[21] SU X L, ZHOU W C, WANG J B. Preparation and dielectric property of Al and N Co-doped SiC powder by combustion synthesis. Journal of the American Ceramic Society, 2012, 95(4):1388–1393.[22] SU X L, ZHOU W C, XU J, et al. Preparation and dielectric property of B and N-codoped SiC powder by combustion synthesis. Journal of Alloys and Compounds, 2013, 551(25): 343–347.[23] BUNSELL A R, PIANT A. A review of the development of the three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006, 41(3): 823–839.[24] DING D H, ZHOU W C, ZHANG B, et al. Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics. Journal of Materials Science, 2011, 46(8): 2709–2714.[25] WANG D Y, SONG Y C, LI Y Q. Effect of composition and structure on specific resistivity of SiC fibers. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1133–1139.[26] HU T J, LI X D, LI G Y, et al. Axial graded carbon fiber and silicon carbide fiber with sinusoidal electrical resistivity. Journal of the American Ceramic Society, 2011, 94(9): 2808–2811.[27] DING DONG-HAI, ZHOU WAN-CHENG, ZHOU XUAN, et al. Structure and microwave absorbing property of polycarbosilane derived silicon carbide ceramic. Chinese Journal of Inorganic Chemistry, 2012, 28(5): 922–926.[28] LI Q, YIN X W, DUAN W Y, et al. Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. Journal of Alloys and Compounds, 2013, 565(15): 66–72.[29] 王 军. 含过渡金属的碳化硅纤维的制备及其电磁性能. 长沙: 国防科学技术大学博士论文, 1997.[30] CHEN ZHI-YAN, WANG JUN, LI XIAO-DONG, et al. Preparation of continuous Fe containing carbide silicon fibers and their structural radar-wave absorbing materials. Acta Materiae Compositae Sinica, 2007, 24(5): 72–76.[31] CHEN X J, SU Z M, ZHANG L, et al. Iron nanoparticle- containing silicon carbide fibers prepared by pyrolysis of Fe(CO)5-doped polycarbosilane fibers. Journal of the American Ceramic Society, 2010, 93(1): 89–95.[32] 刘旭光. 异形截面碳化硅纤维制备及其吸波性能. 长沙: 国防科学技术大学博士学位论文, 2010.[33] HUANG Yun-Xia, CAO Quan-Xi, LI Zhi-Min, et al. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physical Sinica, 2009, 58(11): 8002–8007.[34] WANG Y, LUO F, ZHANG L, et al. Microwave dielectric properties of Al-doped ZnO powders synthesized by coprecipitation method. Ceramics International, 2013, 39(8): 8723–8727.[35] KONG L, YIN X W, ZHANG L T, et al. Effect of aluminum doping on microwave absorption properties of ZnO/ZrSiO4 composite ceramics. Journal of the American Ceramic Society, 2012, 95(10): 3158–3165.[36] KONG L, YIN X W, LI Q, et al. High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. Journal of the American Ceramic Society, 2013, 96(7): 2211–2217.[37] 刘汉东. 四针状氧化锌晶须的掺杂及其性能研究. 国防科学技术大学硕士学位论文, 2008, 长沙.[38] CHEN Y J, CAO M S, WANG T H, et al. Microwave absorption properties of the ZnO nanowire-polyester composites. Applied Physics Letters, 2004, 84(17): 3367–3369.[39] ZHOU Z W, CHU L S, HU S C. Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Materials Science and Engineering B, 2006, 126: 93-96.[40] LI H F, HUANG Y H, SUN G B, et al. Directed growth and microwave absorption property of crossed ZnO netlike micro-nanostructures. The Journal of Physical Chemistry C, 2010, 114(22): 10088–10091.[41] ZHUO R F, QIAO L, FENG H T, et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. Journal of Applied Physics, 2008, 104(9): 094101–1–5.[42] CAO M S, SHI X L, FANG X Y, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Applied Physics Letters, 2007, 91(20): 203110–1–3.[43] FANG X Y, SHI X L, CAO M S, et al. Micro-current attenuation modeling and numerical simulation for cage-like ZnO/SiO2 nanocomposite. Journal of Applied Physics, 2008, 104(9): 096101–1–3.[44] FANG X Y, CAO M S, SHI X L, et al. Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. Journal of Applied Physics, 2010, 107(5): 054304–1–11.[45] ZHUO R F, FENG H T, CHEN J T, et al. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. The Journal of Physical Chemistry C, 2008, 112(31): 11767–11775.[46] YANG H J, YUAN J, LI Y, et al. Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Communications, 2013, 163: 1–6.[47] YUAN J, YANG H J, HOU Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technology, 2013, 237: 309–313.[48] LIU H T, TIAN H, CHENG H F. Dielectric properties of SiC fiber- reinforced SiC matrix composites in the temperature range from 25 to 700℃ at frequency between 8.2 and 18 GHz. Journal of Nuclear Materials, 2013, 432(1/3): 57–60. [49] YUAN J, SONG W L, FANG X Y, et al. Tetra-needle zinc oxide/ silica composites: High-temperature dielectric properties at X-band. Solid State Communications, 2013, 154: 64–68.[50] QING Y C, ZHOU W C, LUO F, et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon, 2010, 48(14): 4074–4080.[51] HUA SHAO-CHUN, WANG HAN-GONG, WANG LIU-YING, et al. Absorption properties of micro-plasma sprayed carbon nanotube-nano structure Al2O3-TiO2 composite coatings. Acta Physical Sinica, 2009, 58(9): 6534–6541.[52] ZHOU L, ZHOU W C, SU J B, et al. Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Applied Surface Science, 2012, 258(7): 2691–2696.[53] 刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究. 长沙: 国防科学技术大学博士学位论文, 2010.[54] HUANG Z B, KANG W B, QING Y C, et al. Influences of SiCf content and length on the strength, toughness and dielectric properties of SiCf/LAS glass-ceramic composites. Ceramics International, 2013, 39(3): 3135–3140.[55] LI X M, ZHANG L T, YIN X W. Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3-D printing and pressureless sintering. Scripta Materiala, 2012, 67: 380–383.[56] YU X M, ZHOU W C, LUO F, et al. Effect of fabrication atmosphere on the dielectric properties of SiC/SiC composites. Journal of Alloys and Compounds, 2009, 479(1/2): L1–L3.[57] DING D H, SHI Y M, WU Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase. Carbon, 2013, 60(538/561): 552–555.[58] 丁冬海. SiCf/SiC耐高温结构吸波材料性能研究. 西安: 西北工业大学博士学位论文, 2012.[59] DING D H, ZHOU W C, LUO F, et al. Mechanical properties and oxidation resistance of SiCf/CVI-SiC composites with PIP-SIC interphase. Materials Science and Engineering A, 2012, 543(1): 1–5.[60] LIU H T, CHENG H F, WANG J, et al. Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases. Journal of Alloys and Compounds, 2010, 491(1/2): 248–251.[61] LIU H T, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. Journal of European Ceramic Society, 2012, 32(10): 2502–2512. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||