[1] Parida K M, Sahu N, Tripathi A K, et al. Gold promoted S, N-doped TiO2: an efficient catalyst for CO adsorption and oxidation. Environ. Sci. Technol., 2010, 44(11): 4155–4160.[2] Wang R H, Li J H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ. Sci. Technol., 2010, 44(11): 4282–4287.[3] Masui T, Imadzu H, Matsuyama N, et al. Total oxidation of toluene on Pt/CeO2-ZrO2-Bi2O3/?-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone. J. Hazard. Mater., 2010, 176(1/2/3): 1106–1109.[4] Santos V P, Pereira M F R, ?rf?o J J M, et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B: Enviromental, 2010, 99(1/2): 353–363.[5] Wyrwalski F, Lamonier J F, Siffert S, et al. Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts. Appl. Catal. B, 2007, 70(1–4): 393–399.[6] Zhang Q H, Liu X H, Fan W O, et al. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream. Appl. Catal. B, 2011, 102(1/2): 207–214.[7] Rivas B, López-Fonseca R, Jiménez-González C, et al. Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement. J. Catal., 2011, 281(1): 88–97.[8] Cheng F Y, Su Y, Liang J, et al. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. J. Chen. Chem. Mater., 2010, 22(3): 898–905.[9] Li W Y, Cheng F Y, Tao Z L, et al. Vapor transportation preparation and reversible lithium intercalation/deintercalation of ?-MoO3 microrods. J. Phys. Chem. B, 2006, 110(1): 119–124.[10] Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Letters, 2009, 9(12): 4215–4220.[11] Song R Q, Xu A W, Deng B, et al. Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization. J. Phys. Chem. B, 2005, 109(48): 22758–22766.[12] Umbarkara S B, Kotbagi T V, Biradar A V. Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 310(1/2): 150–158.[13] Li Z P, Gao L, Zheng S. Investigation of the dispersion of MoO3 onto the support of mesoporous silica MCM-41. Applied Catalysis A: General, 2002, 236(1/2): 163–171.[14] Kim G J, Guo X F. Fabrication and application of highly ordered mesoporous Co3O4, NiO, and their metals. J. Phys. Chem. Solids, 2010, 71(4): 612–615.[15] Wang Y G, Wang Y Q, Ren J W, et al. Synthesis of morphology- controllable mesoporous Co3O4 and CeO2. Journal of Solid State Chemistry, 2010, 183(2): 277–284.[16] Sinha A K , Suzuki K, Takahara M, et al. Preparation and characterization of mesostructured γ-manganese oxide and its application to VOCs elimination. J. Phys. Chem. C, 2008, 112(41): 16028– 16035.[17] Xia Y S, Dai H X, Zhang L, et al. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three- dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental, 2010, 100(1/2): 229–237.[18] Xia Y S, Dai H X, Jiang H Y, et al. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Hazard Mater., 2011, 186(1): 84–91. [19] Xia Y S, Dai H X, He H. Ultrasound-assisted hard-templating fabrication of 3D ordered mesoporous samarium oxide and europium oxide. J. Sci. Conf. Proc., 2009, 1(2/3): 146–150.[20] Yue W B, Hill A H, Harrison A, et al. Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chem. Commun., 2007(24): 2518–2520.[21] Du Y C, Shi S L, Dai H X. Water-bathing synthesis of high-surface-area zeolite P from diatomite. Particuology, 2011, 9(2): 174– 178. [22] Kaddouri A, Ifrah S, Gelin P. A study of the influence of the synthesis conditions upon the catalytic properties of LaMnO3.15 in methane combustion in the absence and presence of H2S. Catal. Lett., 2007, 119(3/4): 237–244.[23] Lin H Y, Chen Y W. The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys., 2004, 85(1): 171–175. |