Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (2): 113-123.DOI: 10.3724/SP.J.1077.2014.10003
• Invited Review • Next Articles
GUO Xiang-Xin1, HUANG Shi-Ting1, ZHAO Ning1, CUI Zhong-Hui1, FAN Wu-Gang1, LI Chi-Lin1, LI Hong2
Received:
2013-09-03
Revised:
2013-09-17
Published:
2014-02-20
Online:
2014-01-17
CLC Number:
GUO Xiang-Xin, HUANG Shi-Ting, ZHAO Ning, CUI Zhong-Hui, FAN Wu-Gang, LI Chi-Lin, LI Hong. Rapid Development and Critical Issues of Secondary Lithium-air Batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123.
Add to citation manager EndNote|Ris|BibTeX
[1] Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., 2010, 1(14): 2193–2203.[2] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(1): 19-29.[3] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci., 2011, 4(8): 2614–2624.[4] Kinoshita K. Metal/Air Batteries. In Electrochemical Oxygen Technology; Kinoshita, K., Ed.; John Wiley & Sons, Inc.: New York, 1992: 259–306.[5] Abraham K M, Jiang Z. A Polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc., 1996, 143(1): 1–5.[6] Ogasawara T, Debart A, Bruce P G, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[7] Kraytsberg A, Ein-Eli Y. Review on Li-air batteries-opportunities, limitations and perspective. J. Power Sources, 2011, 196(3): 886–893.[8] Shao Y Y, Park S, Xiao J, et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal., 2012, 2(5): 844–857.[9] Shao Y Y, Ding F, Xiao J, et al. Making Li-air batteries rechargeable: Materials challenges. Adv. Funct. Mater., 2013, 23(8): 987–1004.[10] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries. J. Electrochem. Soc., 2012, 159(2): R1-R30.[11] Black R, Adams B, Nazar L F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater., 2012, 2(7): 801–815.[12] Li F, Zhang T, Zhou H. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ. Sci., 2013, 6(4): 1125–1141.[13] Mizuno F, Nakanishi S, Kotani Y, et al. Rechargeable Li-air batteries with carbonate-based liquid electrolytes, Electrochemistry, 2010, 78(5): 403–405.[14] Freunberger S A, Chen Y H, Bruce P G, et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc., 2011, 133(20): 8040-8047.[15] McCloskey B D, Bethune D S, Luntz A C, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett., 2011, 2(10): 1161–1166.[16] Laoire C ?, Plichta E J, Abraham K M, et al. Rechargeable lithium/ TEGDME-LiPF6/O2 battery. J. Electrochem. Soc., 2011, 158(3): A302–A308.[17] Lu Y C, Kwabi D G, Yang S H. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci., 2011, 4(8): 2999–3007.[18] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc., 2012, 134(6): 2902–2905.[19] Takechi K, Higashi S, Mizuno F, et al. Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem. Lett., 2012, 1(1): A27–A29.[20] Chen Y, Freunberger S A, Peng Z, et al. The Li-O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc., 2012, 134(18): 7952–7957.[21] Freunberger S A, Chen Y, Drewett N E, et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed., 2011, 50(37): 8609–8613.[22] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[23] Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry. J. Electrochem. Soc., 2013, 160(4): A549–A552. [24] Veith G M, Dudney N J, Howe J, et al. Spectroscopic characterization of solid discharge products in li-air cells with aprotic carbonate electrolytes. J. Phys. Chem. C, 2011, 115(29): 14325–14333.[25] Lim H D, Park K Y, Gwon H, et al. The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. Chem. Commun., 2012, 48(67): 8374–8376.[26] Wang H, Liao X Z, Li L, et al. Rechargeable Li/O2 Cell based on a LiTFSI-DMMP/PFSA-Li composite electrolyte. J. Electrochem. Soc., 2012, 159(11): A1874–A1879.[27] Xu D, Wang Z L, Xu J J, et al. Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. Chem. Commun., 2012, 48(55): 6948–6950. [28] Jung H G, Kim H S, Park J B, et al. A Transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. Nano Lett., 2012, 12(8): 4333?4335.[29] Mitchell R R, Gallant B M, Shao-Horn Y, et al. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett., 2013, 4(7): 1060–1064.[30] Qiao R, Chuang Y D, Yan S, et al. Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7(11):e49182. doi:10.1371/journal.pone.0049182.[31] Karan N K, Balasubramanian M, Fister T T, et al. Bulk sensitive characterization of the discharged products in Li-O2 batteries by nonresonant Inelastic X-ray scattering. J. Phys. Chem. C, 2012, 116(34): 18132–18138.[32] Ryan K R, Trahey L, Okasinski J S, et al. In situ synchrotron X-ray diffraction studies of lithium oxygen batteries. J. Mater. Chem. A, 2013, 1(23): 6915-6919.[33] Lu Y C, Crumlin E J, Veith G M, et al. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Scientific Reports, 2012, 2(715), doi: 10.1038/ srep00715.[34] Wen R, Hong M, Byon H R, In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc., 2013, 135(29): 10870–10876.[35] Fan W G, Cui Z H, Guo X X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. J. Phys. Chem. C, 2013, 117(6): 2623–2627.[36] Cui Z H, Fan W G, Guo X X. Lithium-oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J. Power Source, 2013, 235: 251-255.[37] Gallant B M, Mitchell R R, Kwabi D G, et al. Chemical and morphological changes of Li-O2 battery electrodes upon cycling. J. Phys. Chem. C, 2012, 116(39): 20800-20805.[38] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc., 2012, 134(6): 2902–2905.[39] Guo X X, Zhao N. The role of charge reactions in cyclability of lithium-oxygen batteries. Adv. Energy Mater., 2013, 3(11): 1413–1416.[40] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium–air battery. Nature Chem., 2012, 4(7): 579–585.[41] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed., 2013, 52(1): 392–396.[42] Mitchell R R, Gallant B M, Shao-Horn Y, et al. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. , 2013, 4(7): 1060–1064.[43] Radin M D, Rodriguez J F, Tian F, et al. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc., 2012, 134(2): 1093–1103.[44] Garcia-Lastra J M, Myrdal J S G, Christensen R, et al. DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li-air batteries. J. Phys. Chem. C, 2013, 117(11): 5568–5577.[45] Gerbig O, Merkle R, Maier J. Electron and ion transport in Li2O2. Adv. Mater. 2013, 25(22): 3129–3133.[46] Adams B D, Radtke C, Black R, et al. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci., 2013, 6: 1772–1778.[47] Zhong L, Mitchell R R, Liu Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett., 2013, 13(5): 2209–2214.[48] Thotiyl M M O, Freunberger S A, Peng Z, et al. The carbon electrode in non-aqueous Li-O2 cells. J. Am. Chem. Soc., 2013, 135(1): 494–500.[49] Gowda S R, Brunet A, Wallraff G M, et al. Implications of CO2 contamination in rechargeable non-aqueous Li-O2 batteries. J. Phys. Chem. Lett., 2013, 4(2): 276–279.[50] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery. Science, 2012, 337(6094): 563–566.[51] Li F J, Zhang T, Yamada Y, et al. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv. Energy Mater. 2013, 3(4): 532–538.[52] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5(6): 489–494.[53] Mizuno F, Nakanishi S, Shirasawa A, et al. Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochem. 2011, 79(11): 876–881.[54] Soavi F, Monaco S, Mastragostino M. Catalyst-free porous carbon cathode and ionic liquid for high efficiency, rechargeable Li/O2 battery. J. Power Sources, 2013, 224: 115–119. [55] Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem. Commun., 2009, 11(4): 791–794.[56] Cui Z H, Guo X X, Li H. High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J. Power Sources, 2013, 244: 731–735.[57] Cui Z H, Guo X X, Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions. Electrochimica Acta, 2013, 89: 229–238.[58] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[59] Debart A, Bao J I, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources, 2007, 174(2): 1177-1182.[60] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium- air batteries. J. Am. Chem. Soc., 2010, 132(35): 12170–12171.[61] Debart A, Paterson A J, Bao J I, et al. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47(24): 4521–4524.[62] Lu Y C, Gasteiger H A, Parent M C, et al. The influence of catalysts on discharge and charge voltage of rechargeable Li-oxygen batteries. Electrochem. Solid State Lett., 2010, 13(6): A69–A72.[63] Trahey L, Johnson C S, Bruce P G, et al. Activated lithium- metal-oxides as catalytic electrodes for Li-O2 cells. Electrochem. Solid State Lett., 2011, 14(5): A64–A66. [64] Xiao J; Wang D H, Xu W, et al. Optimization of air electrode for Li/Air batteries. J. Electrochem. Soc., 2010, 157(4): A487?A492.[65] Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun., 2009, 11(6): 1127?1130.[66] Yang Y, Sun Q, Li Y S, et al. Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J. Electrochem. Soc., 2011, 158 (10): B1211–B1216.[67] Dong S M, Chen X, Wang S, et al. 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction: towards Li-air batteries. ChemSusChem, 2012, 5(9): 1712–1715.[68] Cui Y M, Wen Z Y, Sun S J, et al. Mesoporous Co3O4 with different porosities as catalysts for the lithium-oxygen cell. Solid State Ionics, 2012, 225(SI): 598–603.[69] Xu J J, Xu D, Wang Z L, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries. Angew. Chem. Int. Ed., 2013, 52(14): 3887–3890.[70] He P, Wang Y G, Zhou H S. Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. Chem. Comm., 2011, 47: 10701–10703.[71] Lu Y, Wen Z Y, Jin J, et al. Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J. Solid State Electr., 2012, 16(5): 1863–1868.[72] Zhao Y L, Xu L, Mai L Q, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. P. Natl. Acad. Sci. USA., 2012, 109(48): 19569–19574.[73] Fu Z H, Lin X J, Huang T, et al. Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J. Solid State Electr., 2012, 16(4): 1447–1452.[74] Wang H, Liao X Z, Jiang Q Z, et al. A novel Co(phen)(2)/C catalyst for the oxygen electrode in rechargeable lithium air batteries. Chinese Sci. Bull., 2012, 57(16): 1959–1963.[75] Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem., 2012, 4(12): 1004–1010.[76] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in non-aqueous Li-O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[77] McCloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries. J. Phys. Chem. C, 2012, 116(45): 23897–23905.[78] Lu Y C, Shao-Horn Y. Probing the reaction kinetics of the charge reactions of nonaqueous Li?O2 batteries. J. Phys. Chem. Lett., 2013, 4(1):93–99.[79] Wang R, Yu X Q, Bai J M, Li H, et al. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin ?lm and powder electrodes. J. Power Source, 2012, 218: 113–118.[80] Zhang T, Zhou H. A reversible long-life lithium-air battery in ambient air. Nat. Commun., 2013, 4: 1817–1823.[81] Lim H K, Lim H D, Park K Y, et al. Toward a lithium-‘air’ battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc., 2013, 135(26): 9733–9742. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | LI Yicun, LIU Xuedong, HAO Xiaobin, DAI Bing, LYU Jilei, ZHU Jiaqi. Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing [J]. Journal of Inorganic Materials, 2023, 38(3): 303-309. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||