[1] JIN Chong, ZHANG Wei-Guo, YAO Su-Wei, et al. Effect of heat-treatment process on the structure and photoelectric performance of TiO2 nanotube arrays. Journal of Inorganic Materials, 2012, 27(1): 54-58.[2] Sun W T, Yu Y, Pan HY, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 2008, 130(4): 1124-1125.[3] Varghese O K, Gong D, Paulose M, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials, 2003, 15(7/8): 624-627.[4] Mun Kyu-Shik, Alvarez Sara D, Choi Won-Youl, et al. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano, 2010, 4(4): 2070-2076.[5] Paulose Maggie, Peng Lily, Popat Ketul C, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. Journal of Membrane Science, 2008, 319(1/2): 199-205.[6] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters, 2007, 7(6): 1686-1691.[7] Grimes Craig A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. Journal of Materials Chemistry, 2007, 17(15): 1451-1457.[8] Chang Wen-Yang, Fang Te-Hua, Chiu Zhe-Wei, et al. Nanomechanical properties of array TiO2 nanotubes. Microporous and Mesoporous Materials, 2011, 145(1/3): 87-92.[9] Keyu Xie, Jie Li, Yanqing Lai, et al. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale, 2011, 3(5): 2202-2207.[10] Xie Yibing, Fu Degang. Supercapacitance of ruthenium oxide deposited on titania and titanium substrates. Materials Chemistry and Physics, 2010, 122(1): 23-29.[11] Maryam S, Aboutalebi S H, Konstantinov K, et al. A highly ordered titania nanotube array as a supercapacitor electrode. Physical Chemistry Chemical Physics, 2011, 13(11): 5038-5041.[12] Zhang Guoge, Huang Chuanjun, Zhou Limin, et al. Enhanced charge storage by the electrocatalytic effect of anodic TiO2 nanotubes. Nanoscale, 2011, 3(10): 4174-4181.[13] Fabregat-Santiago F, Barea E M, Bisquert J, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society, 2008, 130(34): 11312-11316.[14] Ambade Rohan B, Ambade Swapnil B, Shrestha Nabeen K, et al. Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodesJ. ChemComm, 2013, 49(23): 2308-2310.[15] Kim Jae-Hun, Zhu Kai, Yan Yanfa, et al. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett., 2010, 10(10): 4099-4104.[16] Wang Yong-gang, Zhang Xiao-gange. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica Acta, 2004, 49(12): 1957-1962.[17] Tao Feng, Shen Yingzhong, Liang Yanyu, et al. Synthesis and characterization of Co(OH)2/TiO2 nanotubecomposites as supercapacitor materials. Journal of Solid State Electrochemistry, 2007, 11(6): 853-858.[18] Seitsonen A P, Over H. Oxidation of HCl over TiO2-supported RuO2: a density functional theory study. Journal of Physical Chemistry C, 2010, 114(51): 22624-22629.[19] Ho Chia-Ling, Wu Mao-Sung. Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors. Journal of Physical Chemistry C, 2011, 115 (44): 22068-22074.[20] Aikaterini G M, Prodromidis M I. Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochimica Acta, 2006, 51(17): 3537-3542.[21] ZHENG Dan-Liang, TANG Dian, ZHENG Nai-Zhen, et al. Complex oidizing and corrosion resistance of TA2 titanium plate. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 65-70.[22] Jun Yongseok, Park Jong Hyeok, Man Gu Kang. The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. Chemical Communications, 2012, 48(52): 6456-6471.[23] Lu Xihong, Wang Gongming, Zhai Teng, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett., 2012, 12 (3): 1690–1696.[24] GU Jia-Shan, CHU Dao-Ba, ZHOU Xing-Fu, et al. Heterogeneous electrocatalytic reduction of maleic acid on nanocrystalline TiO2 film modified Ti electrode. Acta Chimica Sinica, 2003, 61(9): 1405-1409.[25] Hsu Yu-Kuei, Chen Ying-Chu, Lin Yan-Gu. Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. Journal of Electroanalytical Chemistry, 2012, 673: 43-47.[26] Wang John, Polleux Julien, Lim James, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C, 2007, 111(40): 14925-14931.[27] Isrihetty S, Nafarizal N, Hashim S. Structural and electrical properties of TiO2 thin film derived from Sol-Gel method using titanium (IV) butoxide. International Journal of Integrated Engineering, 2010, 3(4): 1-35.[28] Sur S, -ztürk Z, -ztas M, et al. Studies on structural and electrical properties of MnO films prepared by the spray pyrolysis method. Physica Scripta, 2011, 84(1): 015701. |