[1] Li Jun-Liang, Wang Shao-Rong, Wang Zhen-Rong, et al. (La0.74Bi0.10Sr0.16)MnO3?δ-Ce0.8Gd0.2O2?δ cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 188(2): 453–457.[2] Zhang Lei, Xia Chang-Rong, Zhao Fei, et al. Thin film ceria–bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3?δ-Y0.25Bi0.75O1.5 cathodes. Materials Research Bulletin, 2010, 45(5): 603–608.[3] Yang Zhi-Jie, Wang Wen-Bao, Xiao Jia, et al. A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3-?-BaZr0.1Ce0.7Y0.2O3?? composite cathode for solid oxide fuel cells. Journal of Power Sources, 2012, 204: 89–93.[4] Jin Hong-Jian, Wang Huan, Zhang Hua, et al. Synthesis and characterization of GdBaCo2O5+δ?cathode material by glycine-nitrate process. Journal of Inorganic Materials, 2012, 27(7): 751–756.[5] Shao Zong-Ping, Sossia Haile M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431: 170–173.[6] Zhang Yao-Hui, Huang Xi-Qiang, Lü Zhe, et al. A screen printed Ce0.8Sm0.2O1.9 film solid oxide fuel cell with a Ba0.5Sr0.5Co0.8Fe0.2O3?δ cathode. Journal of Power Sources, 2006, 160(2): 1217– 1220.[7] Yang Zhi-Bin, Yang Cheng-Hao, Jin Chao, et al. Ba0.9Co0.7 Fe0.2Nb0.1O3?δ as cathode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13(8): 882–885.[8] Yao Ke-Guang, Liu Xiao-Mei, Li Pei, et al. Study on BaCo0.7Fe0.2Nb0.1O3-δ-SDC composite cathodes for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2011, 36(10): 6123–6127.[9] Li Yuan, Zhao Hai-Lei, Xu Nan-Sheng, et al. Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0.7Fe0.2Nb0.1O3?δ ceramic membranes. Journal of Membrane Science, 2010, 362(1/2): 460–470.[10] Zhu Cheng-Jun, Liu Xiao-Mei, Yi Cui-Shan, et al. Novel BaCo0.7Fe0.3-yNbyO3-δ(y = 0–0.12) as a cathode for intermediate temperature solid oxide fuel cell. Electrochemistry Communications, 2009, 11(5): 958–961.[11] Yan Duan-Ting, Liu Xiao-Mei, Bai Xin-Yu, et al. Electrical properties of grain boundaries and size effects in samarium-doped ceria. Journal of Power Sources, 2010, 195(19): 6486–6490. |