[1] Dimesso L, Forster C, Jaegermann W, et al. Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chemical Society Reviews, 2012, 41(15): 5068-5080.[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861):359-367.[3] Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry, 2009, 19(17): 2526-2552.[4] Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews-Columbus, 2004, 104(10): 4271-4302.[5] Muhr H J, Krumeich F, Sch?nholzer U P, et al. Vanadium oxide nanotubes—a new flexible vanadate nanophase. Advanced Materials, 2000, 12(3): 231-234.[6] Seng K H, Liu J, Guo Z P, et al. Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochemistry Communications, 2011, 13(5): 383-386.[7] Xiong C, Aliev A E, Gnade B, et al. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano, 2008, 2(2): 293-301.[8] Song H K, Lee K T, Kim M G, et al. Recent progress in nanostructured cathode materials for lithium secondary batteries. Advanced Functional Materials, 2010, 20(22): 3818-3834.[9] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946.[10] Coustier F, Passerini S, Smyrl W H. Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. Solid State Ionics, 1997, 100(3/4): 247-258.[11] Leger C, Bach S, Soudan P, et al. Evaluation of the Sol–Gel mixed oxide Cr0.11V2O5.16 as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs Li. Solid State Ionics, 2005, 176(15): 1365-1369.[12] WEI Ying-Jin, LI Xu, WANG Chun-Zhong, et al. Preparation and electrochemical proprtties of Cu doped V2O5. Acta Physico-Chimica Sinica, 2007, 23(7): 1090-1094.[13] Jaya T, Jayaram P, Ramachandran T, et al. Synthesis of solid solutions of Mn and Bi substituted V2O5 and substitutional effect in structural and optoelectronic behavior. Physica B: Condensed Matter, 2012, 407(8): 1214-1218.[14] Dobley A, Ngala K, Yang S, et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chemistry of Materials, 2001, 13(11): 4382-4386.[15] Park H K. Manganese vanadium oxides as cathodes for lithium batteries. Solid State Ionics, 2005, 176(3): 307-312.[16] Giorgetti M, Berrettoni M, Smyrl W H. Doped V2O5-based cathode materials: where does the doping metal go? An X-ray absorption spectroscopy study. Chemistry of Materials, 2007, 19(24): 5991- 6000.[17] Hara D, Shirakawa J, Ikuta H, et al. Charge-discharge reaction mechanism of manganese vanadium oxide as a high capacity anode material for lithium secondary battery. Journal of Materials Chemistry, 2002, 12(12): 3717-3722.[18] Whittingham M S, Zavalij P Y. Control of the structure and properties of vanadium and manganese oxides through tailored soft synthesis. International Journal of Inorganic Materials, 2001, 3(8): 1231-1236.[19] Silversmit G, Depla D, Poelman H, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004, 135(2): 167-175.[20] Larachi F, Pierre J, Adnot A, et al. Ce3d XPS study of composite CexMn1?xO2?y wet oxidation catalysts. Applied Surface Science, 2002, 195(1): 236-250.[21] Yu D M, Zhang S T, Liu D W, et al. Effect of manganese doping on Li-ion intercalation properties of V2O5 films. Journal of Materials Chemistry, 2010, 20(48): 10841-10846.[22] Cheah Y L, Gupta N, Pramana S S, et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources, 2011, 196(15): 6465-6472.[23] O'Dwyer C, Lavayen V, Tanner D A, et al. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Advanced Functional Materials, 2009, 19(11): 1736-1745.[24] Perera S D, Patel B, Nijem N, et al. Vanadium oxide nanowire–carbon nanotube binder-free flexible electrodes for supercapacitors. Advanced Energy Materials, 2011, 1(5): 936-945.[25] Cocciantelli J, Menetrier M, Delmas C, et al. On the δ→γirreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics, 1995, 78(1): 143-150.[26] LIU Guo-Cong, LIU You-Nian, LIU Su-Qing, et al. Sol-Gel synthesis and electrochemical performance of Li3V2-2x/3Mnx(PO4)3 cathode material for lithium-ion batteries. Journal of Inorganic Materials, 2012, 27(10): 1017-1022.[27] Cui Y, Zhao X, Guo R. Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochimica Acta, 2010, 55(3): 922-926.[28] Qiao Y Q, Wang X L, Xiang J Y, et al. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochimica Acta, 2011, 56(5): 2269-2275. |