[1] 李天保, 梁 建, 许并社. 光子晶体提高GaN基LED出光效率的研究进展. 半导体光电, 2010, 33(3): 339-371.[2] Fujii T, Gao Y, Sharma R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett., 2004, 84: 855-857.[3] 齐 云, 戴 英, 李安意. 提高发光二极管LED外量子效率的途径. 电子元件与材料, 2003, 22(4): 43-45.[4] Sun Ching-Cherng, Lin Chao-Ying. Optical Modeling and Light Extraction of an LED with Surface Roughening and Sharpening. Third International Conference on Solid State Lighting, 2004, 5187: 100-106.[5] Wang Dong-Xue, Ferguson Ian T, Buck John A. GaN-based distributed Bragg reflector for high-brightness LED and solid-state lighting. Applied Optics, 2007, 46(21): 4763-4767. [6] Kwon Min-Ki, Kim Ja-Yeon, Park Il-Kyu, et al. Enhanced emission efficiency of GaN / InGaN multiple quantum well light- emitting diode with an embedded photonic crystal. Applied Physics Letters, 2008, 92(25): 251110-251113.[7] Lee Jae-Hoon, Lee Dong-Yul, Oh Bang-Won, et al. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Transactions On Electron Devices, 2010, 57(1): 157–163.[8] Noda Susumu, Tomoda Katsuhiro, Yamamoto Noritsugu, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289(2549): 604-606.[9] Chen Jian, Wang Qing-Kang, Li Hai-hua, et al. Far-field superlens for nanolithography. Chin. Phys. B, 2010, 19(3): 34202-34208.[10] Efremov A A, Tarkhin D V, Bochkareva N I, et al. Determination of the coefficient of light attenuation in thin layers of light-emitting diodes. Semiconductors, 2006, 40(3): 375-378.[11] Thomas Michael E, Andersson Stefan K, Sova Raymond M, et al. Frequency and temperature dependence of the refractive index of sapphire. Infrared Physics & Technology, 1998, 39(4): 235–249.[12] Su Y K, Chen J J, Lin C L, et al. Structural analysis of nitride- based LEDs grown on micro- and nano-scale patterned sapphire substrates. Phys. Status Solidi C, 2010, 7(7): 1784–1786.[13] Robert Ashurst W, Carraro C, Maboudian R. Vapor phase anti-stiction coatings for MEMS. Ieee Transactions on Device and Materials Reliability, 2003, 3(4): 173-178. |