[1] Kharton V V, Viskup A P, Naumovich E N, et al. Oxygen ion transport in La2NiO4-based ceramics. Journal of Materials Chemistry, 1999, 9: 2623–2639.[2] Vashook V V, Yushkevich I I, Kokhanovsky L V, et al. Composition and conductivity of some nickelates. Solid State Ionics, 1999, 119: 23–30.[3] Li S, Zhang D D, Sun J C. Synthesis and Electrical Conductivity of Novel Perovskite·Like Cathode Materials. The 29th Academic Annual Meeting of Chemistry and Physical Power, Guangzhou, 2009: 238–239.[4] Zhang H, Jin J, Yu G Y, et al. Nonstoichiometry and oxygen permeability in La2NiO4+δ. Chinese Journal of Inorganic Chemistry, 2000, 16(6): 911–915.[5] Li Q, Fan Y, Sun L P, et al. Preparation and electrochemical properties of composite cathode Lal.6Sr0.4NiO4-Ce0.9Gd0.1O1.9 for IT-SOFC. Chinese Journal of Inorganic Chemistry, 2007, 23(2): 300–304.[6] Pay attention to material genome initialive. Materials China, 2012, 2: 61.[7] White A. The materials genome initiative: one year on. Materials Research Society Bulletin, 2012, 37: 715–716.[8] Huang D P, Xu Q, Chen W, et al. Sintering, microstructure and conductivity La2NiO4+δ ceramic. Ceramics International, 2008, 34(3): 651–655.[9] Kharton V V, VisKup A P, Kovalevsky A V, et al. Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics, 2001, 143(3/4): 337–353.[10] Kharton V V, Yaremchenko A A, Tsipis E V, et al. Characterization of mixed-conducting La2Ni0.9Co0.1O4+δ membranes for dry methane oxidation. Applied Catalysis A, 2004, 261(1): 25–35.[11] Kharton V V, Yaremchenko A A, Shaula A L, et al. Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Solid State Chemistry, 2004, 177(1): 26–37.[12] Shaw C K M. Mass Transport in Mixed Conducting Perovskite Related Oxides. The?se de Doctorat, Universite? de Londres, 2001.[13] Aguadero A, Alonso J A, Fern?andez-D??az M T, et al. In situ high temperature neutron powder diffraction study of La2Ni0.6Cu0.4O4+δ in air: correlation with the electrical behaviour. Journal of Power Sources, 2007, 169(1): 17–24.[14] Aguadero A, Alonso J A, Escudero M J, et al. Evaluation of the La2Ni1?xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics, 2008, 179(11/12): 393–400.[15] Boehm E. Les Nickelates A2MO4+δ Nouveaux Mate?riaux de Cathode Pour Piles a? Combustible SOFC Moyenne Temperature. The?se de Doctorat, Universite? de Bordeaux I, 2002.[16] Khartona V V, Tsipis E V, Yaremchenko A A, et al. Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+δ. Solid State Ionics, 2004, 166(1/2): 327–337.[17] Li C, Yu G Y, Yang N R. Supported dense oxygen permeating membrane of mixed conductor La2Ni0.8Fe0.2O4+δ prepared by Sol-Gel method. Separation and Purification Technology, 2003, 32(1/2/3): 335–339. [18] Tsipisa E V, Naumovich E N, Shaula A L, et al. Oxygen nonstoichiometry and ionic transport in La2Ni(Fe)O4+δ. Solid State Ionics, 2008, 179: 57–60.[19] Kharton V V, Tsipis E V, Naumovich E N, et al. Mixed conductivity, oxygen permeability and redox behavior of K2NiF4-type La2Ni0.9Fe0.1O4+δ. Journal of Solid State Chemistry, 2008, 181: 1425–1433.[20] Mauvy F, Boehm E, Bassat J M, et al. Oxygen permeation fluxes through La2Cu0.5Ni0.5O4+δ dense ceramics: comparison with oxygen diffusion coefficients. Solid State Ionics, 2007, 178(19/20): 1200–1204.[21] Ziesche S, Jurk R, Trofimenko N, et al. Permeation and oxygen exchange of Ln2Ni0.8Cu0.2O4-materials (Ln=La, Pr, Nd). Solid State Ionics, 2008, 179(27-32): 1351–1353.[22] Mazo G N, Savvin S N, Petrykin V V, et al. Oxygen mobility in layered cuprates La2-xSrxCuO4-δ. Solid State Ionics, 2001, 141-142: 313–319.[23] Li N, Chen N, Li F S, et al. Theoretical research on optimization ingredient regulation of BaBO3 series hypoxic materials. Scientia Sinica Phys, Mech. & Astron., 2011, 41(9): 1075–1079. |