[1] Chen P C, Shen G Z, Shi Y, et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 2010, 4(8): 4403-4411.[2] An K H, Kim W S, Park Y S, et al. Supercapacitors using single- walled carbon nanotube electrodes. Adv. Mater., 2001, 13(5): 497-499.[3] Pell W G, Conway B E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes. J. Power Sources, 2004, 136(2): 334-345.[4] Sikha G, Popov B N. Performance optimization of a battery-capacitor hybrid system. J. Power Sources, 2004, 134(1): 130-138.[5] PEI Xiao-Ke, LIN Bi-Zhou, ZHANG Jin-Fei, et al. Synthesis and characterization of MoS2 composites pillared by hydroxy-Fe-Al oligocations. Journal of Inorganic Materials, 2005, 20(6): 1329-1336.[6] LIANG Hong-Xun, LV Jin-Jun, LIU Wei-Min, et al. Study on self-lubrication ceramic of Y-TZP/MoS2. Journal of Inorganic Materials, 2004, 19(1): 207-213.[7] LIU Hui-Wen, XUE Qun-Ji. High temperature lubrication of TZP ceramics. Journal of Inorganic Materials, 1997, 12(5): 681-686.[8] Jacobson A J, Chianelli R R, Whittingham M S. Amorphous molybdenum-disulfide cathodes. J. Electrochem. Soc., 1979, 126(12): 2277-2278.[9] Kazuma K, Tomohiko I, Kaoru I, et al. Degradation mechanism due to decomposition of organic electrolyte in Li/MoS2 cells during long cycling. J. Power Sources, 1998, 70(2): 235-239.[10] Julien C, Sekine T, Balkanski M. Lattice dynamics of lithium intercalated MoS2. Solid State Ionics, 1991, 48(3/4): 225-229.[11] Fang X P, Hua C X, Guo X W, et al. Lithium storage in commercial MoS2 in different potential ranges. Electrochimica Acta, 2012, 81(10): 155-160.[12] Xiao J, Wang X J, Yang X Q, et al. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater., 2011, 21(15): 2840–2846.[13] Dominko R, Ar?on D, Mrzel A, et al. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv. Mater., 2002, 14(21): 1531-1534.[14] Du G D, Guo Z P, Wang S Q, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun., 2010, 46(12): 1106–1108.[15] Wang S Q, Li G H, Du G D, et al. Hydrothermal synthesis of molybdenum disulfide for lithium ion battery applications. Chinese Journal of Chemical Engineering, 2010, 18(6): 910–913.[16] Feng C Q, Ma J, Li H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Materials Research Bulletin, 2009, 44(9): 1811-1815.[17] Murugan A V, Quintin M, Delville M H, et al. Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries. J. Power Sources, 2006, 156(2): 615-619.[18] Chang K, Chen W X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun., 2011, 47(3): 4252-4254.[19] Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater., 2010, 22(16): 4522-4524.[20] Chang K, Chen W X, Ma L. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem., 2011, 21(3): 6251-6257.[21] Chang K, Chen W X. Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem., 2011, 21(9): 17175-17184.[22] Santa Ana M A, Mirabal N, Benavente E, et al. Electrochemical behavior of lithium intercalated in a molybdenum disulfide-crown ether nanocomposite. Electrochimica Acta, 2007, 53(4): 1432–1438.[23] Kim I T, Egashira M, Yoshimoto N, et al. Combination of alkali- treated soft carbon and activated carbon fiber electrodes for asymmetric electric double-layer capacitor. Electrochemistry, 2012, 80(6): 415-420.[24] Ohta T, Kim I T, Egashira M, et al. Effects of electrolyte composition on the electrochemical activation of alkali-treated soft carbon as an electric double-layer capacitor electrode. J. Power Sources. 2012, 198(10): 408-415.[25] Ni J F, Yang L X, Wang H B, et al. A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification. J. Solid State Electrochem., 2012, 16(8): 2791-2796.[26] Lee B G, Yoon J R. Preparation and characteristics of Li4Ti5O12 anode material for hybrid supercapacitor. Journal of Electrical Engineering & Technology, 2012, 7(2): 207-211.[27] Manish C, Gehan A J A. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature, 2000, 407(6801): 164-167.[28] Li J L, Gao F. Analysis of electrodes matching for asymmetric electrochemical capacitor. J. Power Sources, 2009, 194(2): 1184-1193.[29] Wang H Y, Yoshio M. Performance of AC/graphite capacitors at high weight ratios of AC/graphite. J. Power Sources, 2008, 177(2): 681-684. |