[1] Tai K, Ulm F J, Ortiz C. Nanogranular origins of the strength of bone. Nano Letters, 2006, 6(11): 2520-2525.[2] DONG Zhi-Hong, LI Yu-Bao, ZHANG Li, et al. Preparation and characterization of porous HA/PU scaffold material for soft bone repair. Journal of Inorganic Materials, 2007, 22(6):1255-1258.[3] Teixeira S, Rodriguez M A, Monteiro F J, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Materials Science and Engineering C, 2009, 29(5): 1510-1514.[4] CHENG Xin, LI Yan-Bao, LU Chun-Hua, et al. Effect of pretreatment on fabrication of natural fibroin/apatite composites using alternate soaking method. Journal of Inorganic Materials, 2011, 26(1): 43-48.[5] FENG Wen-Po, QI Yuan-Ming, TANG Ke-Yong. Effects of gum arabic on properties of collagen-hydroxyapatite composite. Journal of Inorganic Materials, 2011, 26(1): 38-42.[6] McBane J E, Shaifpoor S, Cai K, et al. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tisse engineering applications. Biomaterials, 2011, 32(26): 6034-6044.[7] Hong Y, Guan J, Fujimoto K L, et al. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials, 2010, 31(15): 4249-4258.[8] Tare R S, Khan F, Tourniaire G, et al. A microarray approacth to the identification of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth. Biomaterials, 2009, 30(6): 1045-1055.[9] Boissard C I R, Bourban P E, Tami A E, et al. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomaterialia, 2009, 5(9): 3316-3327.[10] Wang L, Li Y B, Zuo Y, et al. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration. Biomedical materials, 2009, 4: 1-7.[11] Liu H, Zuo Y, Li Y B, et al. Preparation and characterization of aliphatic polyurethane and hydroxyapatite composites scaffold. Journal of Applied Polymer Science, 2009, 112(5): 2968–2975.[12] Exner W, Arlt C, Mahrholz T, et al. Nanoparticles with various surface modifications as functionalized cross-linking agents for composite resin materials. Composites Science and Technology, 2012, 72(10): 1153-1159.[13] Heo Su-Jin, Kim Seung-Eon, Wei Jie, et al. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research Part A, 2009, 89A: 108–116.[14] 赵亮, 秦岩. 植物油醇解发制备单甘酯及不饱和聚酯合成研究. 武汉: 武汉理工大学硕士论文, 2008.[15] Wang H J, Rong M Z, Zhang M Q, et al. Biodegradable foam plastics based on castor oil. Biomacromolecules, 2008, 9(2): 615-623.[16] Hanemann T. Influence of particle properties on the viscosity of polymer-alumina composites. Ceramics International, 2008, 34(8): 2099-2105.[17] Gite V V, Kulkarni R D, Hundiwale D G, et al. Synethesis and characterization of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils. Surface Coatings International Part B: Coatings Transactions, 2006, 89: 99-192.[18] Nejati E, Mirzadeh H, Zandi M. Syntheis and characterization of nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering. Composite Part A: Applied Science and Manufacturing, 2008, 39(10): 1589-1596.[19] Teramoto N, Saitoh Y, Takahashi A, et al. Biodegradable polyurethane elastomers prepared from isocyanate-terminated poly(ethylene adipate), castor oil, and glycerol. J. Appl. Polym. Sci, 2010, 115(6): 3199-3204.[20] Bertazzo S, Zambuzzi W F, Capos D DP, et al. Hydroxyapatite surface solubility and effect on cell adhesion. Colloids and Surfaces B: Biointerfaces, 2010, 78:177-184. |