Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (8): 795-803.DOI: 10.3724/SP.J.1077.2013.12758
• Review • Next Articles
YANG Guo-Jing1, LIN Mian1, ZHANG Lei1, GOU Zhong-Ru2
Received:
2012-12-15
Revised:
2013-01-31
Published:
2013-08-20
Online:
2013-07-15
Supported by:
National Natural Science Foundation of China (81271956); Science and Technology Department of Zhejiang Province Foundation (2011C33049); Health Bureau of Zhejiang Province Foundation (2010SSA005); Wenzhou Science and Technology Bureau Foundation (H20100076, Y20110026)
CLC Number:
YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair[J]. Journal of Inorganic Materials, 2013, 28(8): 795-803.
Add to citation manager EndNote|Ris|BibTeX
[1] Calori G M, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: any specific needs? Injury, 2011, 42(S2): S56–63. [2] Resano M, García-Ruiz E, Alloza R, et al. Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art. Anal. Chem., 2007, 79(23): 8947–8955. [3] Moore W R, Graves S E, Bain G I. Synthetic bone graft substitutes. Anz. J. Surg., 2001, 71(6): 354–361.[4] Peltier L F, Bickel E Y, Lillo R, et al. The use of plaster of Paris to fill defects in bone. Ann. Surg., 1957. 146(1): 61–69. [5] Peltier L F. The use of plaster of Paris to fill defects in bone. Clin. Orthop., 1961, 21: 1–31. [6] Guarnieri R, Aldini NN, Pecora G, et al. Medial-grade calcium sulfate hemihydrate (surgiplaster) in healing of a human extraction socket--histologic observation at 3 months: a case report. Int. J. Oral. Maxillofac. Implants, 2005, 20(4): 636– 641.[7] Hak D J. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J. Am. Acad. Orthop. Surg., 2007, 15(4): 525–536. [8] Thomas M V, Puleo D. Calcium sulfate: properties and clinical applications. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, 88B(3): 597–610. [9] Pedersen B F, Semmingsen D. Neutron diffraction refinement of the structure of gypsum, CaSO4?2H2O. Acta Crystallogr., Sect. B: Struct. Sci., 1982, 38(4): 1074–1077. [10] Schofield P F, Knight K S, Stretton I C. Thermal expansion of gypsum investigated by neutron powder diffraction. Am. Mineral., 1996, 81(7/8): 847–851. [11] de la Torre ? G, López-Olmo M-G, ?lvarez-Rua C, et al. Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffr., 2004, 19(3): 240–246. [12] Gallitelli P. Calcium sulfate hemihydrate and soluble anhydrite. Period. Mineral., 1933, 4: 1–42. [13] Bezou C, Nonat A, Mutin J-C, et al. Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods. J. Solid State Chem., 1995, 117(1): 165–176. [14] Abriel W, Nesper R. Determination of the crystal structure of calcium sulfate hemihydrate by X-ray diffraction and potential-profile calculations. Z. Kristallogr., 1993, 205(1): 99–113.[15] Fl?rke O W. Crystallographic and X-ray study in the system CaSO4-CaSO4-2H2O. Neues Jahrb. Mineral. Monatsh., 1952, 84: 189–240. [16] Lager G A, Armbruster T, Rotella F J, et al. A crystallographic study of the low-temperature dehydration products of gypsum, CaSO4?2H2O: hemihydrate CaSO4?0.5H2O, and γ-CaSO4. Am. Mineral., 1984, 69(9/10): 910–919. [17] Kirfel A, Will G. Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallogr., Sect. B: Struct. Sci., 1980, 36(12): 2881–2890. [18] Ling Y, Demopoulos G P. Preparation of α-calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res., 2005, 44 (4): 715–724. [19] Yang D S. France National Scciety of Plasters Industries. Plaster: Physics-Chemistry and Fabrication-Apllication. Beijing: China Architecture-Building Press, 1987. [20] Christofferson J, Christifferson M R. The kinetics of calcium sulfate dihydration in water. J. Cryst. Growth., 1976, 35(1): 79– 88. [21] Dumazer G, Narayan V, Smith A, et al. Modeling gypsum crystallization on a submicrometric scale. J. Phys. Chem. C, 2009, 113(4): 1189–1195.[22] Saha A, Lee J, Pancera S M, et al. New Insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy. Langmuir, 2012, 28(30): 11182–11187.[23] Finot E, Lesniewska E, Mutin J C, et al. Investigations of surface forces between gypsum microcrystals in air using atomic force microscopy. Langmuir, 2000, 16(9): 4237–4244.[24] Jaffel H, Korb J-P, Ndobo-Epoy J-P, et al. Probing micro-structure evolution during the hardening of gypsum by proton NMR relaxometry. J. Phys. Chem. B, 2006, 110(14): 7385– 7391. [25] Jaffel H, Korb J-P, Ndobo-Epoy J-P, et al. Multi-scale approach continuously relating the microstructure and the macroscopic mechanical properties of plaster pastes during their settings. J. Phys. Chem. B, 2006, 110 (37): 18401–18407. [26] Annie Lemarchand, Florent Boudoire, Elodie Boucard, et al. Plaster hydration at different plaster-to-water ratios: acoustic emission and 3-dimensional submicrometric simulations. J. Phys. Chem. C, 2012, 116(7): 4671–4678.[27] Li Z, Demopoulos G P. Solubility of CaSO4 phases in aqueous HCl + CaCl2 solutions from 283 K to 353 K. J. Chem. Eng. Data, 2005, 50(6): 1971–1982. [28] Fisher RD, Mbogoro MM, Snowden M E, et al. Dissolution kinetics of polycrystalline calcium sulfate-based materials: influence of chemical modification. ACS Appl. Mater. Interfaces, 2011, 3(9): 3528–3537. [29] Mbogoro M M, Snowden M E, Edwards M A, et al. Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives. J. Phys. Chem. C, 2011, 115(20): 10147– 10154. [30] Klepetsanis P G, Dalas E, Koutsoukos P G. Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate. Langmuir, 1999, 15(4): 1534–1540. [31] Christensen A N, Olesen M, Cerenius Y, et al. Formation and transformation of five different phases in the CaSO4?H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem. Mater., 2008, 20(6): 2124 –2132. [32] Akyol E, O?ner M, Barouda E, et al. Systematic structural determinants of the effects of tetraphosphonates on gypsum crystallization. Cryst. Growth Des., 2009, 9(12): 5145 –5154. [33] Massaro F R, Rubbo M, Aquilano D. Theoretical equilibrium morphology of gypsum (CaSO4·2H2O). 1. A syncretic strategy to calculate the morphology of crystals. Cryst. Growth Des., 2010, 10(7): 2870–2878. [34] Massaro F R, Rubbo M, Aquilano D. Theoretical equilibrium morphology of gypsum (CaSO4·2H2O). 2. The stepped faces of the main [001] zone. Cryst. Growth Des., 2011, 11(5): 1607– 1614. [35] Rubbo M, Bruno M, Massaro F R, et al. The five twin laws of gypsum (CaSO4·2H2O): A theoretical comparison of the interfaces of the penetration twins. Cryst. Growth Des., 2012, 12(6): 3018–3024. [36] Rubbo M, Bruno M, Massaro F R, et al. The five twin laws of gypsum (CaSO4·2H2O): a theoretical comparison of the interfaces of the contact twins. Cryst. Growth Des., 2012, 12(1): 264–270.[37] Ling Y, Demopoulos G P. Preparation of α-Calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res., 2005, 44 (4): 715–724. [38] 彭红霞. 常压盐溶液法-半水脱硫石膏的制备及晶形调控研究. 重庆: 重庆大学硕士论文. 2010.04. [39] Guan B, Jiang G, Fu H, et al. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol–water solution under mild conditions. Ind. Eng Chem Res., 2011, 50(23): 13561–13567. [40] Guan B, Ma X, Wu Z, et al. Crystallization routes and metastability of r-calcium sulfate hemihydrate in potassium chloride solutions under atmospheric pressure. J. Chem. Eng. Data, 2009, 54(9): 719–725. [41] Fu H, Guan B, Jiang G, et al. Effect of supersaturation on competitive nucleation of CaSO4 phases in a concentrated CaCl2 solution. Cryst Growth Des, 2012, 12(3): 1388– 1394. [42] Guan B, Yang L, Wu Z. Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Ind. Eng. Chem. Res., 2010, 49(12): 5569–5574.[43] Kong B, Guan B, Yates M Z. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir, 2012, 28(40): 14137–14142. [44] Woo K M, Yu B, Jung H M, et al. Comparative evaluation of different crystal-structured calcium sulfate as bone-filling materials. J. Biomed. Mater. Res. B. Appl. Biomater., 2009, 91B(2): 545–554.[45] Rees G D, Evans G R, Hammond S J, et al. Formation and morphology of calcium sulfate nanoparticles and nanowires in water- in-oil microemulsions. Langmuir, 1999, 15(6): 1993– 2002. [46] Yang L X, Meng Y F, Yin P, et al. Shape control synthesis of low-dimensional calcium sulfate. Bull. Mater. Sci., 2011, 34(2): 233–237. [47] Song X, Sun S, Fan W, et al. Preparation of different morphologies of calcium sulfate in organic media. J. Mater. Chem., 2003, 13(7): 1817–1821.[48] Chen Y, Wu Q, Ding Y. Stepwise assembly of nanoparticles, -tubes, -rods, and -wires in reverse micelle systems. Eur. J. Inorg. Chem., 2007, 2007(31): 4906–4910.[49] Park Y B, Mohan K, Al-Sanousi A, et al. Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. Biomed. Mater., 2011, 6(5): 055007.[50] Calhoun N R, Greene G W, Blackledge G T. Plaster: a bone substitute in the mandible of dogs. J. Dent. Res., 1965, 44(5): 940–946. [51] Al Ruhaimi K A. Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits. Int. J. Oral Max. Impl., 2000, 15(6): 859–866.[52] Walsh W, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin. Orthop. Relat. Res., 2003, 406(1): 228–235. [53] Yu X W, Xie X H, Yu Z F, et al. Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2009, 89(1): 36–44. [54] Liu D, Lei W, Wu Z, et al. Augmentation of pedicle screw stability with calcium sulfate cement in osteoporotic sheep: biomechanical and screw-bone interfacial evaluation. J. Spinal Disord. Tech., 2011, 24 (4): 235–241. [55] Caba?as M V, Rodríguez-Lorenzo L M, Vallet-Regí M. Setting behavior and in vitro bioactivity of hydroxyapatite/calcium sulfate cements. Chem. Mater., 2002, 14(8): 3550–3555. [56] Lei D, Wardlaw D, Hukins D. Mechanical properties of calcium sulphate/hydroxyapatite cement. Biomed. Mater. Eng., 2006, 16(6): 423–428. [57] Chen Z, Liu H, Cui F Z. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regular self-setting properties. J. Biomed. Mater. Res. A, 2011, 99A(4): 554–563.[58] Nilsson M, Wang J S, Wielanek L, et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. J. Bone Joint Surg. Br., 2004, 86B(1): 120–125.[59] Rauschmann M, Vogl T, Verheyden A, et al. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (spine support): in vertebral compression fractures due to osteoporosis. Eur. Spine. J., 2010, 19(6): 887– 892. [60] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Nano- crystalline hydroxyapatite and calcium sulphate as degradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials, 2005, 26(15): 2677–2684. [61] Brown W, Chow L. A new calcium phosphate setting cement. J. Dent. Res., 1983, 62(672): 384–390. [62] Bohner M. New hydraulic cements based on α-tricalcium phosphate– calcium sulfate dihydrate mixtures. Biomaterials, 2004, 25(4): 741–749. [63] Guo H, Wei J, Liu C. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Biomed. Mater., 2006, 1(4): 193–197.[64] Pinto A J, Carneiro J, Katsikopoulos D, et al. The link between brushite and gypsum: miscibility, dehydration, and crystallo- chemical behavior in the CaHPO4?2H2O–CaSO4?2H2O. Cryst. Growth Des., 2012, 12(1): 445–455. [65] Urban R M, Turner T M, Hall D J, et al. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin. Orthop. Relat. Res., 2007, 459: 110–117.[66] Yang H L, Zhu X S, Chen L, et al. Bone healing response to a synthetic calcium sulfate/β-tricalcium phosphate graft material in a sheep vertebral body defect model. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B(7): 1911–1921. [67] Liu S J. Applications of biomedical calcium phosphate/calcium sulfate composites in vertebroplasty. Chin. J. Med. Guide, 2011, 13(8): 1433–1434. [68] Hench L L, Splinter R J, Allen W, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res., 1971, 5(6): 117–141. [69] Camargo P M, Lekovic V, Weinlaender M, et al. Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2000, 90(5): 581–586. [70] Melo L G N, Nagata M J H, Bosco A F, et al. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clin. Oral. Implants. Res., 2005, 16(6): 683–691.[71] Furlaneto F A C, Nagata M J H, Fucini S E, et al. Bone healing in critical-size defects treated with bioactive glass/calcium sulfate: a histologic and histometric study in rat calvaria. Clin. Oral. Implants. Res., 2007, 18(3): 311–318. [72] Lee S J, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod., 1993, 19(11): 541–544. [73] Wu C T, Chang J, Zreiqat H. Engineered Ca-Si Based Ceramics for Skeletal Tissue Reconstruction. Hussain N S, Santos J D. (editor), Biomaterials for Bone Regenerative Medicine. Trans. Tech. Publishers, Switzerland, 2010: 121–150. [74] Shie M Y, Ding S J, Chang H C. The role of silicon in osteoblast- like cell proliferation and apoptosis. Acta Biomater., 2011, 7(6): 2604–2614. [75] Huang Z G, Chang J, Huang X H. Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4·1/2H2O composite bone cement. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(2): 387–394.[76] Huang Z G, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomater., 2007, 3(6): 952–960.[77] Bell W H. Resorption characteristics of bone and bone substitutes. Oral Surg. Oral Med. Oral Pathol., 1964, 17(5): 650–657. [78] Du C, Wang Y J. Progress in biomineralization study of bone and enamal and biomimetic synthesis of calcium phosphate. J. Inorg. Mater., 2009, 24(5): 882–888.[79] Geesink R G T, De Groot K, Klein C. Bonding of bone to apatite- coated implants. J. Bone Joint Surg., 1988, 70(1): 17–22.[80] Lu J, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res., 2002, 63(4): 408–412. [81] Yang S B, Wang J, Liu C. Research on calcium phosphate cement bone adhesive. J. Inorg. Mater., 2013, 28(1): 85–90. [82] Hench L L, Wilson J. Surface-active biomaterials. Science, 1984, 226(4675): 630–633. [83] Hench L L, Thompson I. Twenty-first century challenges for biomaterials. J. Royal Soc. Interf., 2010, 7(Suppl 4): S379– S391. [84] Wu C T, Chang J. Silicate bioceramics for bone tissue regeneration. J. Inorg. Mater., 2013, 28(1): 29–39.[85] Xu S, Lin K, Wang Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17): 2588–2596.[86] Liu, Q, Chen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials, 2008, 29(36): 4792–4799. [87] Xia L, Zhang Z, Chen L, et al. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur. Cell Mater., 2011, 22: 68–82.[88] Zhai W, Lu J, Chen L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater., 2012, 8(1): 341–349. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||