[1] |
Vadivel Murugan A, Muraliganth T, Manthiram A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe and Co) cathodes. J. Electrochem. Soc., 2009, 156(2): A79-A83.
|
[2] |
吴宇平,戴晓兵,马军旗,等. 锂离子电池─应用与实践. 北京: 化学工业出版社, 2004: 1-2.
|
[3] |
Chen H, Gong W Q, Liu Y L, et al. Characterizat ion and electrochemical properties of LiFePO4/C composite with carbon core structure. J. Inorg. Mater., 2010, 25(5): 480-484.
|
[4] |
Zhou F, Cococcioni M, Kang K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem. Commun., 2004, 6(11): 1144-1148.
|
[5] |
Wang D, Buqa H, Crouzet M, et al. High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J. Power Sources, 2009, 189(1): 624-628.
|
[6] |
Kang B, Ceder G. Electrochemical performance of LiMnPO4 synthesized with off-stoichiometry. J. Electrochem. Soc., 2010, 157(7): A808-A811.
|
[7] |
Kumar P R, Venkateswarlu M, Misra M, et al. Carbon coated LiMnPO4 nanorods for lithium batteries. J. Electrochem. Soc., 2011, 158(3): A227-A230.
|
[8] |
Drezen T, Kwon N H, Bowen P, et al. Effect of particle size on LiMnPO4 cathodes. J. Power Sources, 2007, 174(2): 949-953.
|
[9] |
Yang G, Ni H, Liu H, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd). J. Power Sources, 2011, 196(10): 4747-4755.
|
[10] |
Hu C, Yi H, Fang H, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem. Commun., 2010, 12(12): 1784-1787.
|
[11] |
Oh S M, Oh S W, Yoon C S, et al. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv. Funct. Mater., 2010, 20(19): 3260-3265.
|
[12] |
Yoo H, Jo M, Jin B S, et al. Flexible morphology design of 3D-macroporous LiMnPO4 cathode materials for Li secondary batteries: ball to flake. Adv. Energy Mater., 2011, 1(3): 347-351.
|
[13] |
Choi D, Wang D, Bae I T, et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett., 2010, 10(8): 2799-2805.
|
[14] |
Xu L, Xu Z H, Lai Q Y, et al. Synthesis and electrochemical properties of LiFePO4 prepared byusing tri-n-butyl phosphate as a multi- function agent. J. Funct. Mater., 2010, 38(8): 1316-1319.
|
[15] |
Ni P, Shen L F, Chen L, et al. Sol-Gel synthesis and electrochemical performance of porous LiMnPO4/MWCNT composites. Acta Phys. Chim. Sin., 2011, 27(9): 2123-2128.
|
[16] |
Wang Y R, Yang Y F, Shao Y B, et al. Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method. Solid State Commun., 2010, 150(1/2): 81-85.
|
[17] |
Fu L J, Yang L C, Shi Y, et al. Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery. Micro. Meso. Mater., 2009, 117(1/2): 515-518.
|
[18] |
Fu L J, Liu H, Zhang H P, et al. Synthesis and electrochemical performance of novel core/shell structured nanocomposites. Electrochem. Commun., 2006, 8(1): 1-4.
|