Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (4): 369-374.DOI: 10.3724/SP.J.1077.2013.12300
• Orginal Article • Previous Articles Next Articles
LIU Wen1,2, MIAO Yang1, CHEN Shao-Ping1, ZHUANG Lei1, MENG Qing-Sen1
Received:
2012-05-07
Revised:
2012-07-12
Published:
2013-04-10
Online:
2013-03-20
About author:
LIU Wen. E-mail: lw915136@sina.com
CLC Number:
LIU Wen, MIAO Yang, CHEN Shao-Ping, ZHUANG Lei, MENG Qing-Sen. Preparation and Characterization of AlMgB14-TiB2 Composite by Field-activated and Pressure-assisted Synthesis[J]. Journal of Inorganic Materials, 2013, 28(4): 369-374.
Add to citation manager EndNote|Ris|BibTeX
Experimental steps | The pre-reacted starting powder with composition | Process parameters |
---|---|---|
1 | Al:Mg:B=1:1:14+CS+3wt%Al [ | Temperature 1400℃, pressing force 20 MPa, heating rate 100 ℃/min, soak time 10 min |
2 | AlMgB14+30wt%TiB2 | Temperature 1500℃, pressing force 60 MPa, heating rate 100 ℃/min, soak time 15 min |
Table 1 Experimental methods and process parameters
Experimental steps | The pre-reacted starting powder with composition | Process parameters |
---|---|---|
1 | Al:Mg:B=1:1:14+CS+3wt%Al [ | Temperature 1400℃, pressing force 20 MPa, heating rate 100 ℃/min, soak time 10 min |
2 | AlMgB14+30wt%TiB2 | Temperature 1500℃, pressing force 60 MPa, heating rate 100 ℃/min, soak time 15 min |
Regions | Element | wt% | at% |
---|---|---|---|
A | B | 63.34 | 80.34 |
Mg | 18.31 | 10.33 | |
Al | 18.35 | 9.33 | |
B | B | 4.82 | 18.33 |
Ti | 95.18 | 81.67 | |
C | O | 41.92 | 54.07 |
Mg | 18.07 | 15.34 | |
Al | 40.01 | 30.60 |
Table 2 EDS analyses of A, B, C regions shown in Fig. 4
Regions | Element | wt% | at% |
---|---|---|---|
A | B | 63.34 | 80.34 |
Mg | 18.31 | 10.33 | |
Al | 18.35 | 9.33 | |
B | B | 4.82 | 18.33 |
Ti | 95.18 | 81.67 | |
C | O | 41.92 | 54.07 |
Mg | 18.07 | 15.34 | |
Al | 40.01 | 30.60 |
Sample | Vickers hardness /GPa | Fracture toughness KIC/(MPa·m½) |
---|---|---|
AlMgB14 | 27.2 | 3.00 |
AlMgB14-30wt%TiB2 | 31.5 | 3.65 |
Table 3 Vickers hardness and fracture toughness for AlMgB14 and AlMgB14-30wt%TiB2 composites
Sample | Vickers hardness /GPa | Fracture toughness KIC/(MPa·m½) |
---|---|---|
AlMgB14 | 27.2 | 3.00 |
AlMgB14-30wt%TiB2 | 31.5 | 3.65 |
Preparation methods | Phase composition | Structure | Hardness Vicker/GPa | Fracture toughness KIC/(MPa·m½) | Process parameters |
---|---|---|---|---|---|
FAPAS | AlMgB14 ,TiB2, MgAl2O4(impurity) | In the form of individual (TiB2) grains in the size range of 2-5 µm and larger aggregates with an average grain size of about 10 µm | 31.5 | 3.65 | 1500℃, 60 MPa, 15 min |
Hot pressing[ | AlMgB14, TiB2, MgAl2O4(impurity) FeB4O7(impurity) | In the form of individual (TiB2) grains in the size range of 1-3 µm and larger aggregates with an average grain size of about≤5 µm | 31-35 | 3.7±0.2 | 1600℃, 75 MPa, 1 h |
Table 4 Comparison of composition, structure and mechanical properties about AlMgB14-30wt%TiB2 composite prepared by FAPAS and hot pressing
Preparation methods | Phase composition | Structure | Hardness Vicker/GPa | Fracture toughness KIC/(MPa·m½) | Process parameters |
---|---|---|---|---|---|
FAPAS | AlMgB14 ,TiB2, MgAl2O4(impurity) | In the form of individual (TiB2) grains in the size range of 2-5 µm and larger aggregates with an average grain size of about 10 µm | 31.5 | 3.65 | 1500℃, 60 MPa, 15 min |
Hot pressing[ | AlMgB14, TiB2, MgAl2O4(impurity) FeB4O7(impurity) | In the form of individual (TiB2) grains in the size range of 1-3 µm and larger aggregates with an average grain size of about≤5 µm | 31-35 | 3.7±0.2 | 1600℃, 75 MPa, 1 h |
[1] | Cook B A, Harringa J L, Lewis T L, et al. A new class of ultar- materials based on AlMgB14. Scripta Mater., 2000, 42(6): 597-602. |
[2] | Russell A M, Cook B A, Harringa J L, et al. Coefficient of thermal expansion of AlMgB14. Scr. Mater., 2002, 46(1): 629-633. |
[3] | Lewis T L, Cook B A, Harringa J L, et al. Al2MgO4, Fe3O4, and FeB impurities in AlMgB14. Mater. Sci. Eng. A, 2003, 351(10): 117-122. |
[4] | Cherukuri R, Womack M, Molian P, et al. Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting. Surf. Coat. Technol., 2002, 155: 112-120. |
[5] | Ahmed A, Bahadur S, Cook B A, et al. Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2. Tribol. Int., 2006, 39(1): 129-137. |
[6] | Riedel R. Novel ultrahard materials. Adv. Mater., 1994, 6(7/8): 549-560. |
[7] | Cook B A, Russell A M, Harringa J L, et al. A new fracture- resistant binder phase for use with AlMgB14 and other ultra-hard ceramics. Journal of Alloys and Compounds, 2004, 366(4): 145-151. |
[8] | Roberts David J, Zhao Jinfeng, Munir Zuhair A. Mechanism of reactive sintering of MgAlB14 by pulse electric current. Journal of Refractory Metals & Hard Materials, 2009, 27(4): 556-563. |
[9] | Kevorkijan V, Skapin S D, Jelen M, et al. Cost-effective synthesis of AlMgB14-xTiB2. Journal of the European Ceramic Society, 2007, 27(3): 493-497. |
[10] | Shigeru Okadaa, Toetsu Shishido, Takao Mori, et al. Crystal growth of MgAlB14-type compounds using metal salts and some properties. Journal of Alloys and Compounds, 2008, 458(4): 297-301. |
[11] | Tanaka Minoru, Higashi Iwami. Crystal growth of boron-rich compounds in the Al-Mg-B system. Bulletin of TIRI, 2007, 58(2): 58-61. |
[12] | Meng Q S, Fan W H, Chen R X.et al. Thermoelectric properties of nanostructured FeSi2 prepared by field-activated and pressure- assisted reactive sintering. Journal of Alloys and Compounds, 2010, 492(1/2): 303-306. |
[13] | Richard Bodkin. A Synthesis and Study of AlMgB14. Johannesburg: The University of the Witwatersrand, 2005: 140. |
[14] | Shetty D K, Wright P N, Mincer A H.et al. hidentation fracture of WC-Co cermets. J. Mater. Sci., 1985, 20(5): 1873-1882. |
[15] | Iwami Higashi, Tosio Sakurai, Tetsuzo Atoda. Crystal structure of α-AlB12. Journal of Solid State Chemistry, 1977, 20(1): 67-77. |
[16] | Cook B A, Russell A M, Peters J S, et al. Estimation of surface energy and bonding between AlMgB14 and TiB2. J. Phys. & Chem. Solids, 2010, 71(5): 824-826. |
[17] | Ahmed A, Bahadur S, Russell A M, et al. Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials. Tribology International, 2009, 42(5): 706-713. |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[3] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[4] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[5] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[6] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[7] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
[8] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[9] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[10] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[11] | ZHANG Junmin, CHEN Xiaowu, LIAO Chunjin, GUO Feiyu, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Optimizing Microstructure and Properties of SiCf/SiC Composites Prepared by Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2021, 36(10): 1103-1110. |
[12] | ZHU Danyang, QIAN Kang, CHEN Xiaopu, HU Zewang, LIU Xin, LI Xiaoying, PAN Yubai, MIHÓKOVÁ Eva, NIKL Martin, LI Jiang. Fine-grained Ce,Y:SrHfO3 Scintillation Ceramics Fabricated by Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2021, 36(10): 1118-1124. |
[13] | LI Longbin, XUE Yudong, HU Jianbao, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Influence of SiC Nanowires on the Damage Evolution of SiCf/SiC Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1111-1117. |
[14] | CHEN Lei,WANG Kai,SU Wentao,ZHANG Wen,XU Chenguang,WANG Yujin,ZHOU Yu. Research Progress of Transition Metal Non-oxide High-entropy Ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748-758. |
[15] | WU Xiaojun,YANG Jie,ZHENG Rui,ZHANG Zhaofu,YANG Yi. Effect of Ablation Surface Microstructure on Plasma Arc Ablation Properties of C/C Throat Insert Fabricated via CVI+HPIC Methods [J]. Journal of Inorganic Materials, 2020, 35(6): 654-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||