Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (4): 347-357.DOI: 10.3724/SP.J.1077.2013.12480
• Orginal Article • Next Articles
XIAO Xue-Feng1,2,3, XU Jia-Yue3, XIANG Wei-Dong1
Received:
2012-08-03
Revised:
2012-09-14
Published:
2013-04-10
Online:
2013-03-20
About author:
XIAO Xue-Feng. E-mail: xxf666666@163.com
Supported by:
CLC Number:
XIAO Xue-Feng, XU Jia-Yue, XIANG Wei-Dong. Progress on Scintillation Crystals for Dual-readout Calorimeter[J]. Journal of Inorganic Materials, 2013, 28(4): 347-357.
Add to citation manager EndNote|Ris|BibTeX
Property | PWO | BGO | BSO |
---|---|---|---|
Density/(g·cm-3) | 8.28 | 7.13 | 6.80 |
Radiation length/mm | 9.2 | 11.2 | 11.5 |
Radiation hardness/rad | 105-106 | 104-105 | 105-106 |
Decay constant/ns | 2.2(50%),9.9(34%), 39 (16%)-10 | 5.2(2%), 45(9%), 279 (89%)-300 | 2.4(6%), 26(12%), 99 (82%)-100 |
Peak emission/nm | 430 | 480 | 480 |
Peak excitation/nm | 325 | 295 | 285 |
Refractive index, n | 2.20 | 2.15 | 2.06 |
Light yield, LY(relative) | 5 | 100 | 20 |
Melting point/℃ | 1123 | 1050 | 1030 |
Hardness | 3 | 5 | 5 |
Cleavage | (101) | none | none |
Hygroscopicity | no | no | no |
Temperature coefficient/(%·℃-1) | -1.9 | -1.6 | -2.0 |
Energy loss/MeV | 13.0 | 24.1 | 22.9 |
Moliere radius/cm | 2.0 | 2.3 | - |
Energy resolution(662 keV,%) | 15(1GeV) | 16 | 22 |
Table 1 Some relevant properties of PWO, BGO and BSO crystals [13,25,41-43]
Property | PWO | BGO | BSO |
---|---|---|---|
Density/(g·cm-3) | 8.28 | 7.13 | 6.80 |
Radiation length/mm | 9.2 | 11.2 | 11.5 |
Radiation hardness/rad | 105-106 | 104-105 | 105-106 |
Decay constant/ns | 2.2(50%),9.9(34%), 39 (16%)-10 | 5.2(2%), 45(9%), 279 (89%)-300 | 2.4(6%), 26(12%), 99 (82%)-100 |
Peak emission/nm | 430 | 480 | 480 |
Peak excitation/nm | 325 | 295 | 285 |
Refractive index, n | 2.20 | 2.15 | 2.06 |
Light yield, LY(relative) | 5 | 100 | 20 |
Melting point/℃ | 1123 | 1050 | 1030 |
Hardness | 3 | 5 | 5 |
Cleavage | (101) | none | none |
Hygroscopicity | no | no | no |
Temperature coefficient/(%·℃-1) | -1.9 | -1.6 | -2.0 |
Energy loss/MeV | 13.0 | 24.1 | 22.9 |
Moliere radius/cm | 2.0 | 2.3 | - |
Energy resolution(662 keV,%) | 15(1GeV) | 16 | 22 |
Fig. 5 The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a UV filter. The UV BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cherenkov light (gate 1)[12]
Fig. 7 Average time structure of the signals from light generated by 180 GeV pions traversing the BSO and BGO crystals at θ=30°, and transmitted by the U330 filter[25]
Fig. 8 Emission and absorption spectra (left-hand scale) of the BSO and BGO crystals, and the transmission curve of the U330 and UG11 filters (right-hand scale)[25]
Crystal | Dopants | Attenuation constants | Attenuation of Cherenkov light | Intensity of Cherenkov light /mV | Separation the scintillation and Cherenkov light |
---|---|---|---|---|---|
PWO | Un-doped | 9.7 ns | — | — | No separation |
1%Mo | 26.3 ns | Reducing with Mo concentration decreasing | 115 | Good separation | |
5%Mo | 26.3 ns | 86 | |||
0.5%Pr | 4.9 μs | Reducing with Pr concentration increasing | — | No separation | |
1.5%Pr | 3.1 μs | ||||
BGO | Un-doped | 300 ns | Same | 68 | Good separation |
BSO | Un-doped | 100 ns | 105 | Good separation |
Table 2 Properties of dual-read for PWO(50 GeV), BGO and BSO (180 GeV) crystals
Crystal | Dopants | Attenuation constants | Attenuation of Cherenkov light | Intensity of Cherenkov light /mV | Separation the scintillation and Cherenkov light |
---|---|---|---|---|---|
PWO | Un-doped | 9.7 ns | — | — | No separation |
1%Mo | 26.3 ns | Reducing with Mo concentration decreasing | 115 | Good separation | |
5%Mo | 26.3 ns | 86 | |||
0.5%Pr | 4.9 μs | Reducing with Pr concentration increasing | — | No separation | |
1.5%Pr | 3.1 μs | ||||
BGO | Un-doped | 300 ns | Same | 68 | Good separation |
BSO | Un-doped | 100 ns | 105 | Good separation |
[1] | 姚年增. 晶体生长基础. 合肥: 中国科技大学出版社, 1994: 7-8. |
[2] | Zhao Jing-Tai, Wang Hong, Jin Teng-Teng, et al. Research development of inorganic scintillating crystals. Materials China, 2010, 29(10): 40-48. |
[3] | 中国科学院上海硅酸盐研究所. |
[4] | Akchurin N, Bedeschi F, Cardini A, et al. New crystals for dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research A, 2009, 604(3): 512-526. |
[5] | Wigmas R. Quartz Fibers and the Prospects for Hadron Calorimetry at the 1% Resolution Level. Proceedings of the 7th International Conference on Calorimetry in High Energy Physics, Tucson, Arizona, 1997: 9-14. |
[6] | DREAM Collaboration. Dual-Readout Calorimetry for High-Quality Energy Measurements. Texas Tech University, 2010. |
[7] | Adam P. High resolution hadron calorimetry. Tsinghua University, 2012. |
[8] | Auffray E, Abler D, Brunner S, et al. LuAG Material for Dual Readout Calorimetry at Future High Energy Physics Accelerators. IEEE Nuclear Science Symposium Conference Record, 2009, 43(2): 2245-2249. |
[9] | Auffray E, Abler D, Lecoq P, et al. Dual readout with PWO Crystals and LuAG crystal scintillating Fibers. IEEE Transactions on Nuclear Science. 2010, 57(3): 1454-1459. |
[10] | Zhu Ren-Yuan. |
[11] | Akchurina N, Berntzona L, Cardini A, et al. Dual-readout calorimetry with lead tungstate crystals. Nuclear Instruments and Methods in Physics Research A, 2008, 584(2/3): 273-284. |
[12] | Akchurin N, Alwarawrah M, Cardini A, et al. Dual-readout calorimetry with crystal calorimeters. Nuclear Instruments and Methods in Physics Research A, 2009, 598(3): 710-721. |
[13] | 谢一冈,陈 昌,王 曼,等. 粒子探测器与数据获取. 北京: 科学出版社, 2003: 1-633. |
[14] | Pedrini C. Scintillation mechanisms and limiting factors on each step of relaxation of electronic excitations. Physics of the Solid State, 2005, 47(8): 1406-1411. |
[15] | Wang Ji-Yang, Wu Yi-Cheng. Progress of the research on photoelectronic functional crystals. Materials China, 2010, 29(10): 1-15. |
[16] | Shen Ding-Zhong, Ren Guo-Hao. New growth method of lead fluoride crystal with strong Cherenkov effect. Physics, 2001, 30(8): 496-500. |
[17] | 尤峻汉. 天体物理中的辐射机制, 2版. 北京: 科学出版社, 1998: 1-410. |
[18] | 任国浩. 新型Cherenkov辐射材料的研究进展. 上海先进无机材料研究与应用论坛, 上海, 2003: 114-116. |
[19] | 中国科学院高能物理研究所. |
[20] | Akchurin N, Carrell K, Hauptman J, et al. Hadron and jet detection with a dual-readout calorimeter. Nuclear Instruments and Methods in Physics Research A , 2005, 537(3): 537-561. |
[21] | Akchurin N, Atramentov O, Carrell K, et al. Separation of scintillation and Cherenkov light in an optical calorimeter. Nuclear Instruments and Methods in Physics Research A. 2005, 550(1/2): 185-200. |
[22] | Lecoq P. New crystal technologies for novel calorimeter concepts. XIII International conference on calorimetry in high energy physics (CALOR2008). Journal of Physics: Conference Series, 2009, 160(1): 012016. |
[23] | Lecoq P. Metamaterials for Novel X- or γ-ray Detector Designs. IEEE Nuclear Science Symposium Conference Record, 2008, 7(1): 1405-1409. |
[24] | Wigmans R. Recent results from the DREAM project. XIII International conference on calorimetry in high energy physics (CALOR2008). Journal of Physics: Conference Series, 2009, 160(1): 012018. |
[25] | Akchurin N, Bedeschi F, Cardini A, et al. A comparison of BGO and BSO crystals used in the dual-readout mode. Nuclear Instruments and Methods in Physics Research A, 2011, 640(1): 91-98. |
[26] | Richard W. Dual-Readout Calorimetry for High-Quality Energy Measurements. Proposal and request for beam time to CERN’s SPS Committee. Texas Tech University, 2010: 1-40. |
[27] | Meoni E. New results from the DREAM project. Nuclear Physics B (Proc. Suppl.) , 2011, 215(1): 44-47. |
[28] | Yang Pei-Zhi, Liao Jing-Ying, Shen Bing-Fu, et al. Growth of high quality PWO single crystal. Journal of Inorganic Materials, 2002, 17(2): 210-214 . |
[29] | Hans M, Rui P, Luciano M, et al. Trigger electronics for the a lice PHOS detector. Nuclear Instruments and Methods in Physics Research Section A, 2004, 518(1/2): 525-528. |
[30] | Lecoq P, Dafinei I, Auffray E, et al. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nuclear Instruments and Methods in Physics Research A, 1995, 365(2/3): 291-298. |
[31] | Lecoq P. Ten years of lead tungstate development. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 15-21. |
[32] | Xiang Wei-Dong, Zhang Yu-Fei, Shen Hui, et al. Optical properties of PbWO4 crystals grown by vertical gradient freeze method. Journal of Synthetic Crystals, 2011, 40(2): 343-358. |
[33] | Lin Qi-Sheng, Feng Xi-Qi. Progress on the studies of structure in PbWO4 scintillation crystals. Journal of Inorganic Materials, 2000, 15(2): 193-199. |
[34] | Feng Xi-Qi, Lin Qi-Sheng, Man Zhen-Yong, et al. Intrinsic and radiation-induced colour centers in PbWO4 crystal. Acta Physica Sinica, 2002, 51(2): 315-321. |
[35] | Feng Xi-Qi, Han Bao-Guo, Hu Guan-Qin, et al. A study on radiation damage mechanism in PbWO4 scintillating crystals. Acta Physica Sinica 1999, 48(7): 1282-1291. |
[36] | Kobayashi M, Usuki Y, Ishii M, et al. Scintillation characteristics of PbWO4 single crystals doped with Th, Zr, Ce, Sb and Mn ions. Nuclear Instruments and Methods in Physics Research A, 2001, 465(2/3): 428-439. |
[37] | Ye Chongzhi, Liao Jingying, Shao Peifa, et al. Growth and scintillation properties of F-doped PWO crystals. Nuclear Instruments and Methods in Physics Research A, 2006, 566(2): 757-761. |
[38] | Ren Guo-Hao, Chen Xiao-Feng, Mao Ri-Hua, et al. Luminescence characteristics of lead tungstate(PbWO4) scintillation crystal doped with fluorine anions. Acta Physica Sinica, 2010, 59(7): 4812-4817. |
[39] | Ye Chong-Zhi, Liao Jing-Ying, Yang Pei-Zhi, et al. The luminescence and defects of F, Y co-doped PbWO4 crystals. Acta Physica Sinica, 2006, 55(4): 1947-1952. |
[40] | 严东生, 殷之文, 廖晶莹, 等. 阴阳离子同时双掺杂的高光产额钨酸铅晶体及其生长方法技术. 中国, C30B29/32, CN200510029744.2006.04.26. |
[41] | Kobayashi M, Ishii M, Harada K, el al. Bismuth silicate Bi4Si3O12, a faster scintillator than bismuth germanate Bi4Ge3O12. Nuclear Instruments and Methods in Physics Research Seetion A, 1996, 372(1-2): 45-50. |
[42] | Ishii M, Harada K, Hirose Y, et al. Development of BSO (Bi4Si3O12) crystal for radiation detector. Optical Materials, 2002, 19(1): 201-212. |
[43] | Jiang H, Kim H J, Gul Rooh, et al. Czochralski growth and scintillation properties of Bi4Si3O12(BSO) single crystal. Nuclear Instruments and Methods in Physics Research A, 2011, 648(1): 73-76. |
[44] | Akchurin N, Bedeschi F, Cardin A, et al. Optimization of crystals for applications in dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research A, 2010, 621(1/2/3): 212-221. |
[45] | Nitsche R. Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3. Journal of Applied Physics, 1965, 36(8): 2358-2360. |
[46] | Johnson T F, Ballman A A. Coherent emission from rare earth ions in electro-optic crystals. Journal of Applied Physics, 1969, 40(1): 297-302. |
[47] | Nestor O H, Huang C Y. Bismuth germinate: a high-Z γ-ray and charged particle detector. IEEE Transactions on Nuclear Science, 1975, 22(1): 68-71. |
[48] | Cho Z H, Farukhi M R. BGO as a potential scintillation detector in positron cameras. Journal Nuclear Medicine, 1977, 18(8): 840-844. |
[49] | Farukhi M R. Fast Inorganic Scintillators for Time-of-flight Tomography. IEEE Publication, 1982, CH1791-3: 59-62. |
[50] | Ishii M, Kobayashi M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245-311. |
[51] | Schmid F, Khattak C P, Smith M B. Growth of Bi4Ge3O12 by the heat exchanger method (HEM). Journal of Crystal Growth, 1984, 70(1-2): 466-470. |
[52] | Fan S J, Shen G S, Li J L, et al. Industrial Bridgman growth of large size BGO crystals with special shapes. Crystal Properties and Preparation, 1991, 36-38: 42-45. |
[53] | Ishii M. Progress in BGO Quality Improvement at Hitachi. Princeton University, Department of Physics, 1982: 135-156. |
[54] | Borovlev Y A, Ivannikova N V, Shlegel V N, et al. Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique. Journal of Crystal Growth, 2001, 229(1): 305-311. |
[55] | He C F, Fan S J, Liao J Y, et al. Growth and characterization of BGO. Prog. Cryst. Growth Charact. Mater., 1985, 11(4): 253-262. |
[56] | Wei Zong-Ying, He Chong-Fan, Yin Zhi-Wen. Thermoluminescence study on radiation damage of Bi4Ge3012 crystal. Journal of Synthetic Crystals, 1990, 19(4): 324-330. |
[57] | Takagi K, Oi T, Fukazawa T, et al. Improvement in the scintillation conversion efficiency of Bi4Ge3O12 single crystals. Journal of Crystal Growth, 1981, 52(2): 584-587. |
[58] | Shim J B, Yoshikawa A, Bensalah A, et al. Luminescence, radiation damage, and color center creation in Eu3+-doped Bi4Ge3O12 fiber single crystals. Journal of Applied Physics, 2003, 93(9): 5131-5135. |
[59] | Bravo D A, Kaminskiiz A, Lopezy F J. Electron paramagnetic resonance investigation of Dy3+ions in Bi4Ge3O12 single crystals. J. Phys.: Condens. Matter, 1998, 10(14): 3261-3268. |
[60] | Morrison C A, Leavitt R P. Crystal field analysis of Nd3+ and Er3+ in Bi4Ge3O12. J. Chem. Phys., 1981, 74(1): 25-28. |
[61] | Bravo D, Lopez F J. An electron paramagnetic resonance study of Er3+ in Bi4Ge3O12 single crystals. J. Chem. Phys., 1993, 99(7): 4952-4959. |
[62] | Feng X Q, Hu G Q, Yin Z W, et al. Growth,laser and magneto- optic properties of Nd-doped Bi4Ge3O12 crystal. Materials Science and Engineering B, 1994, 23(2): 83-87. |
[63] | Hu Guan-Qin, Feng Xi-Qi, Yin Zhi-Wen, et al. Laser/ magneto-optic compound function crystal-Nd: Bi4Ge3O12. Journal of Inorganic Materials, 1994, 9(3): 275-280. |
[64] | Akchurin N, Bedeschi F, Cardini A, et al. Dual-readout calorimetry with a full-size BGO electromagnetic section. Nuclear Instruments and Methods in Physics Research A, 2009, 610(2): 488-501. |
[65] | Akchurin N, Astwood A, Cardini A, et al. Separation of crystal signals into scintillation and Cherenkov components. Nuclear Instruments and Methods in Physics Research A, 2008, 595(2): 359-374. |
[66] | Miyahara F, Hariu H, Ishikawa T, et al. Beam test of a BSO calorimeter. Research Report of Laboratory of Nuclear Science, 2004, 37(4): 44-50. |
[67] | Shimizu H, Miyahara F, Hariu H, et al. First beam test on a BSO electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research A, 2005, 550(1/2): 258-266. |
[68] | Liao Jing-Ying, Ye Chong-Zhi, Yang Pei-Zhi. Review on the research of Bi4Ge3O12 scintillation crystals. Chemical Research, 2004, 15(4): 52-58. |
[69] | Fan S J. Bridgman Growth of BSO Crystals. Program Abstract of ICCG-11, 1995. |
[70] | He Jing-Tang, Zhu Guo-Yi, Chen Duan-Bao, et al. Studies on the properties of BSO crystals. High Energy Physics and Nuclear Physics, 1997, 21(10): 886-890. |
[71] | Xu J Y, Wang H, He Q B, et al. Bridgman growth of Bi4Si3O12 scintillation crystals. Journal of the Chinese Ceramic Society, 2009, 37(2): 295-298. |
[72] | Fei Y T, Fan S J, Sun R Y, et al. Study on phase diagram of Bi2O3-SiO2 system for Bridgman growth of Bi4Si3O12 single crystal. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1): 183-187. |
[73] | Ishii M., Senguttuvan N, Kobayashi M, et al. Crystal growth of BSO(Bi4Si3O12) by vertical Bridgman method. Journal of Crystal Growth, 1999, 205(1/2): 191-195. |
[74] | Zhang Y, Xu J Y, Zhang T T. Synthesis and luminescence properties of Eu3+-doped Bi4Si3O12. Journal of Inorganic Materials, 2011, 26(12): 1341-1344. |
[75] | Zhang Y, Xu J Y, He Q B, et al. Bridgman growth and characterization of Bi4(GexSi1-x)3O12 mixed crystals. Journal of Crystal Growth, 2013, 362: 121-124. |
[76] | Fei Yi-Ting, Sun Ren-Ying, Fan Shi-Ji. Scintillation properties of Fe and Cr doped Bi4Si3O12 crystals. Journal of Inorganic Materials, 1999, 14(3): 357-362. |
[77] | Fei Y T, Sun R Y, Fan S J, et al. Vertical bridgman growth and scintillation properties of doped Bi4Si3O12 crystals. Crystal Research and Technology, 1999, 34(9): 1149-1156. |
[78] | Fei Y T, Fan S J, Sun R Y, et al. Bridgman growth of Bi4Si3O12 scintillation crystals and doped effects on radiation resistance. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1): 189-194. |
[79] | Zhang Y, Xu J Y, Shao P F. Growth and spectroscopic properties of Yb:BSO single crystal. Journal of Crystal Growth, 2011, 318(1): 920-923. |
[80] | Feng Xi-Qi. Anti-site defects in YAG and LuAG crystals. Journal of Inorganic Materials, 2010, 25(8): 785-794. |
[81] | Petrosyan A G, Ovanesyan K L, Sargsyan R V, et al. Bridgman growth and site occupation in LuAG:Ce scintillator crystals. Journal of Crystal Growth, 2010, 312(21): 3136-3142. |
[82] | Zhuravleva M, Yang K, Spurrier-Koschan M, et al. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244-1248. |
[83] | Sugiyama M, Fujimoto Y, Yanagida T, et al. Scintillation properties of Tm-doped Lu3Al5O12 single crystals. Optical Materials, 2011, 34(2): 439-443. |
[84] | Wang L X, Yin M, Guo C X, et al. Synthesis and luminescent properties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method. Journal of Rare Earths, 2010, 28(1): 16-21. |
[85] | Wang Z F, Xu M, Zhang W P, et al. Synthesis and luminescent properties of nano-scale LuAG:RE3+ (Ce, Eu) phosphors prepared by co-precipitation method. Journal of Luminescence, 2007, 122-123: 437-439. |
[86] | Chewpraditkul W, Sreebunpeng K, Nikl M, et al. Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection. Radiation Measurements, 2012, 47(1): 1-5. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||