Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (2): 224-228.DOI: 10.3724/SP.J.1077.2012.12615
• Orginal Article • Previous Articles Next Articles
WU Ting, BAI Sheng-Qiang, SHI Xun, CHEN Li-Dong
Received:
2012-10-17
Published:
2013-02-10
Online:
2013-01-23
About author:
吴 汀. E-mail: wuting@mail.sic.ac.cn
Supported by:
CLC Number:
WU Ting, BAI Sheng-Qiang, SHI Xun, CHEN Li-Dong. Enhanced Thermoelectric Properties of BaxEuyCo4Sb12 with Very High Filling Fraction[J]. Journal of Inorganic Materials, 2013, 28(2): 224-228.
Add to citation manager EndNote|Ris|BibTeX
[1] | Slack G A. In: Rowe D M, editor. CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC Press; 1995: 407. |
[2] | Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: a |
new class of thermoelectric materials.Science, 1996, 272(5266):1325-1328. | |
[3] | Sales B C, Mandrus D, Chakoumakos B C, et al. Filled skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B, 1997, 56(23): 15081-15089. |
[4] | Nolas G S, Cohn J L, Slack G A. Effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys. Rev. B, 1998, 58(1):164-170. |
[5] | Chen L D, Karahara T, Tang X F, et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phy., 2001, 90(8):1864-1868. |
[6] | Zhao X Y, Shi X, Chen L D, et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phy. , 2006, 99(5): 053711-1-4. |
[7] | Puyet M, Lenoir B, Dauscher A, et al. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phy., 2004, 95(9): 4852-4855. |
[8] | Morelli D T, Meisner G P, Chen B X, et al. Cerium filling and doping of cobalt triantimonide. Phys. Rev. B, 1997, 56(12): 7376-7383. |
[9] | Nolas G S, Kaeser M, Littleton V R T, et al. High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett., 2000, 77(12):1855-1857. |
[10] | Lamberton G A, Bhattacharya S, Littleton R T, et al. High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett., 2002, 80(4): 598-600. |
[11] | Kuznetsov V L, Kuznetsov L A, Rowe D M. Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys.: Condens. Matter, 2003, 15(29): 5035-5048. |
[12] | Pei Y Z, Chen L D, Zhang W, et al. Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett. , 2006, 89(22): 221107-1-3. |
[13] | Pei Y Z, Yang J, Chen L D, et al. Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. , 2009, 95(4): 042101-1-3. |
[14] | Sales B C, Chakoumakos B C, Mandrus D. Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B, 2000, 61(4): 2475-2481. |
[15] | Nolas G S, Takizawa H, Endo E, et al. Thermoelectric properties of Sn-filled skutterudites. Appl. Phys. Lett., 2000, 77(10): 52-54. |
[16] | Nolas G S, Yang J, Takizawa H. Transport properties of germanium-filled CoSb3. Appl. Phys. Lett., 2004, 84(25): 5210-5212. |
[17] | Uher C. In: Tritt T M, editor. Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semimetals. CA: Academic Press, 2000:139. |
[18] | Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12. Appl. Phys. Lett. , 2007, 90(19): 192111-1-3. |
[19] | Berardan D, Alleno E, Godart C, et al. Improved thermoelectric properties in double-filled Cey/2Yby/2Fe4-x(Co/Ni)xSb12 skutterudites. J. Appl. Phys. , 2005, 98(3):033710-1-6. |
[20] | Lu Q M, Zhang J X, Zhang X, et al. Effects of double filling of La and Ce on thermoelectric properties of CemLanFe1.0Co3.0Sb12 compounds by spark plasma sintering. J. Appl. Phys. , 2005, 98:106107-1-3. |
[21] | Tang X F, Li H, Zhang Q J, et al. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12. J. Appl. Phys. , 2006, 100(12): 123702-1-8. |
[22] | Bai S Q, Pei Y Z, Chen L D, et al. Enhanced thermoelectric performance of dual-element-filled skutterudite BaxCeyCo4Sb12. Acta Mater. Appl., 2009, 57(11): 3135-3139. |
[23] | Bai S Q, Shi X, Chen L D. Lattice thermal transport in BaxREyCo4Sb12(RE=Ce, Yb, and Eu) double-filled skutterudites. Appl. Phys. Lett. , 2010, 96(20): 202102-1-3. |
[24] | Shi X, Kong H, Uher C, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double- filled skutterudites. Appl. Phys. Lett. , 2008, 92(18): 182101-1-3. |
[1] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[2] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[3] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[4] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[5] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[6] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[7] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[8] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[9] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[10] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[11] | YANG Dongwang, LUO Tingting, SU Xianli, WU Jinsong, TANG Xinfeng. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process [J]. Journal of Inorganic Materials, 2021, 36(9): 991-998. |
[12] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[13] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[14] | CAI Jianfeng, WANG Hongxiang, LIU Guoqiang, JIANG Jun. Designing High Entropy Structure in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 399-404. |
[15] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||