[1] |
Willems J J G, Buschow K H J. From permanent magnets to rechargeable hydride electrodes. J. Less-Common Met., 1987, 129(15): 13-30.
|
[2] |
Ovshinsky S R, Fetcenko M A, Ross J. A nickel metal hydride battery for electric vehicles. Science, 1993, 260(5105): 176-181.
|
[3] |
Tsukahara M, Kamiya T, Takahashi K, et al. Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process. J. Electrochem. Soc., 2000, 147(8): 2941-2944.
|
[4] |
Zhang Y H, Li B W, Ren H P, et al. Investigation on the structures and electrochemical performances of La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0-0.2) electrode alloys prepared by melt spinning. Journal of Alloys and Compounds, 2009, 480(1): 547-553.
|
[5] |
Jain I P, Lal C, Jain A. Hydrogen storage in Mg: a most promising material. Int. J. Hydrogen Energy, 2010, 35(10): 5133-5144.
|
[6] |
Iwakura C, Inoue H, Nohara S, et al. Effects of surface and bulk modifications on electrochemical and physicochemical characteristics of MgNi alloys. J. Alloys Compd., 2002, 330-332(1): 636-639.
|
[7] |
Zhao X Y, Ma L Q. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy, 2009, 34(11): 4788-4796.
|
[8] |
Wang F X, Gao X P, Lu Z W, et al. Synthesis, structure and photoluminescence of novel lanthanide (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine carboxylate. J. Alloys Compd., 2004, 370(1/2): 326-332.
|
[9] |
Yang Q M, Ciureanu M, Ryan D H. Composite hydride electrode materials. J Alloys Compd., 1998, 274(1/2): 266-273.
|
[10] |
Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Mater., 2003, 49(3): 213-217.
|
[11] |
Lu Z W, Sun S, Li G R, et al. Electrochemical hydrogen storage of ball-milled Mg-rich Mg-Nd alloy with Ni powders. J. Alloys Compd., 2007, 433(1/2): 269-273.
|
[12] |
Dehouche Z, Goyette J, Bos T K, et al. Moisture effect on hydrogen storage properties of nanostructured MgH2-V-Ti composite. Int. J. Hydrogen Energy, 2003, 28(9): 983-988.
|
[13] |
Hamed S, Kaflou A, Simch A. Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying. Int. J. Hydrogen Energy, 2009, 34(18): 7724-7730.
|
[14] |
Srivastava S, Sai R S S, Singh B K, et al. On the synthesis and characterization of some new AB5 type MmNi4.3Al0.3Mn0.4+LaNi5-xSix (x=0.1,0.3, 0.5) and Mg-xwt%CFMmNi5-ywt%Si hydrogen storage materials. Int. J. Hydrogen Energy, 2000, 25(5): 431-440.
|
[15] |
Chen Y, Sequeira C, Chen C P, et al. Electrochemical properties of the ball-milled La1.8Ca0.2Mg14Ni3+xwt%Ni composites (x=0, 50, 100 and 200). J Alloys Compd., 2003, 354(1/2):120-123.
|
[16] |
Ouyang L Z, Yao L, Yang X S, et al. The effects of Co and Ni addition on the hydrogen storage properties of Mg3Mm. Int. J. Hydrogen Energy, 2010, 35(15): 8275-8280.
|
[17] |
Gross K J, Chartouni D, Leroy E, et al. Mechanically milled Mg composites for hydrogen storage: the relationship between morphology and kinetics. J. Alloys Compd., 1998, 269(1/2): 259-270.
|
[18] |
Gao X P, Wang Y, Lu Z W, et al. Preparation and electrochemical hydrogen storage of the nanocrystalline LaMg12 alloy with Ni powders. Chem. Mater., 2004, 16(1): 2515-2517.
|
[19] |
Tarashita N, Takahashi M, Kobayashi K, et al. Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder. J. Alloys Compd., 1999, 293-295(1): 541-545.
|
[20] |
Sakintuna B, Lamari-Darkim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy, 2007, 32(9): 1121-1140.
|
[21] |
Deledda S, Borissova A, Poinsignon C, et al. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J. Alloys Compd., 2005, 404-406(1): 409-412.
|
[22] |
Charbonnier J, de Rango P, Fruchart D, et al. Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride. J. Alloys Compd., 2004, 383(1/2): 205-208.
|
[23] |
Jin S A, Shim J H, Cho Y W, et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J. Power Sources, 2007, 172(2): 859-862.
|
[24] |
Chai Hao, Gu Hao, Zhu Yun-Feng, et al. Effect of TiF3 on the hydrogen desorption property of Mg95Ni5 by hydriding combustion synthesis. Rare Metal Materials and Engineering, 2010, 39(1): 50-54.
|
[25] |
Kim J S, Lee C R, Choi J W, et al. Effect of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying. Journal of Power Sources, 2002, 104(2): 201-207.
|
[26] |
Justi E W, Ewe H H, Kalberlah A W, et al. Electrocatalysis in the nickel-titanium system. Energy Convers, 1970, 10(5): 183-187.
|
[27] |
Bicerano J, Keem J E, Schlegel H B. Theoretical studies of hydrogen storage in binary Ti-Ni, Ti-Cu and Ti-Fe alloys. Chim. Acta, 1986,70(4): 265-296.
|
[28] |
Liu W H, Lei Y Q, Sun D L, et al. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy. J. Power Sources, 1996, 58(2): 243-247.
|
[29] |
Sun L, Wang G X, Liu H K, et al. Synthesis of nonstoichiometric amorphous Mg-based alloy electrodes by mechanical milling. Electrochem. Solid State Lett., 2000, 3(3): 121-124.
|
[30] |
Wang Y, Qiao S Z, Wang X. Electrochem-ical hydrogen storage properties of ball-milled NdMg12 alloy with Ni powders. Int. J. Hydrogen Energy, 2008, 33(10): 1023-1027.
|
[31] |
Gasiorowski A, Iwasieczko W, Skoryna D, et al. Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M=Mn, Al). J. Alloys Compd., 2004, 364(1/2): 283-288.
|
[32] |
Zheng G, Popov B N, White R E, et al. Application of porous electrode theory on metal hydride electrodes in alkaline solution. J. Electrochemical Soc., 1996, 143(2): 435-441.
|
[33] |
Zhang Y H, Li B W, Ren H P, et al. Investigation on structures and electrochemical performances of the as-cast and as-quenched electrode alloys. Int. J. Hydrogen Energy, 2007, 32(18): 4627-4634.
|
[34] |
Feng F, Ping X, Zhou Z, et al. The relationship between equilibrium potential during discharge and hydrogen concentration in a metal hydride electrode. Int. J. Hydrogen Energy, 1998, 23(7): 599-602.
|