[1] SONG Ci, ZHANG Chang-Long, XIA Chang-Tai, et al. Growth of composite Sapphire/Ti?:Sapphire by hydrothermal method. Journal of Inorganic Materials, 2005, 20(4): 864–868.[2] Moulton P F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B, 1986, 3(1): 125–133. [3] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra high intensity 3 00 TW Laser at 0.1 Hz repetition rate. Optics Express, 2008, 16(3): 2109–2114.[4] Joyce David B, Schmid Frederick. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. Journal of Crystal Growth, 2010, 312(8): 1138–1141.[5] Wang Buguo, Bliss David F, Callahan Michael J. Hydrothermal growth of Ti:sapphire(Ti3+: Al2O3) lasercrystals. Journal of Crystal Growth, 2009, 311(3): 443–447.[6] Nehari Abdeldjelil, Brenier Alain, Panzer Gerard, et al. Ti-doped sapphire (Al2O3) single crystals grown by the kyropoulos technique and optical characterizations. Crystal Growth and Design, 2011, 11(2): 445–448.[7] Zhang J, Sun Z R, Wang Z G, et al. Spectral analysis of Ti:Al2O3 crystal grown by temperature gradient technique. Journal of Synthetic Crystals, 2005, 34(4): 657–661.[8] Sanchez Antonio, Menber, Strauss Ieee Alan J. et al. Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3. IEEE Journal of Quantum Electronics, 1988, 24(6): 995–1002.[9] Joyce R R, Richards P L. Far-infrared spectra of Al2O3 doped with Ti, V and Cr. Physical Review, 1969, 179(2): 375–380.[10] Peele A G, Chantler C T, Paterson D, et al. Measurement of mass attenuation coefficients in air by application of detector linearity tests. Physical Review A, 2002, 66(4): 042702–1–7. |