[1] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69–96.[2] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735–758.[3] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide. Science, 2001, 293(5528): 269–271.[4] Wang Y, Feng C X, Zhang M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron- trapped oxygen vacancy and doped-nitrogen. Appl. Catal. B, 2010, 100(1/2): 84–90.[5] Li D, Haneda H, Labhsetwar N K. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett., 2005, 401(4/5/6): 579–584.[6] Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B, 2003, 42(4): 403–409.[7] Serpone N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B, 2006, 110(48): 24287–24293.[8] Zuo F, Wang L, Wu T, et al. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc., 2010, 132(34): 11856–11857.[9] Chen X, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750.[10] Dhumal S Y, Daulton T L, Jiang J K. Synthesis of visible light-active nanostructured TiOx (x<2) photocatalysts in a flame aerosol reactor. Appl. Catal. B, 2009, 86(3/4): 145–151.[11] Serwicka E, ESR study on the interaction of water vapour with polycrystalline TiO2 under illumination.Colloids Surf., 1985, 13: 287–293.[12] CHEN Yi-Lin, CAO Xiao-Xin, LIN Bi-Zhou. Preparation and property of visible-light-driven InVO4/MWCNTs photocatalyst for benzene decomposition. Journal of Inorganic Materials, 2011, 26(5): 508–512.[13] Du X Y, Wang Y, Mu Y Y, et al. A new highly selective H2 sensor based on TiO2/PtO?Pt dual-layer films. Chem. Mater., 2002, 14(9): 3953–3957.[14] Li Y Z, Hwang D S, Lee N H, et al. Synthesis and characterization of carbon-doped titania as artificial solar light sensitive photocatalyst. Chem. Phys. Lett., 2005, 404(1/2/3): 25–29.[15] Howe R F, Gr?tzel M. EPR observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem., 1985, 89(21): 4495–4499.[16] Cho J M, Yun W J, Lee J K, et al. Electron spin resonance from annealed titania nanotubes. Appl. Phys. A, 2007, 88(4): 751–755.[17] Kortüm G. Reflectance Spectroscopy, Spring-Verlag: New York, 1969.[18] JING Li-Qiang, SUN Zhi-Hua, WANG Bai-Qi, et al. Preparation and characterization of La doped TiO2 nanoparticles by sol-hydrothermal method. Journal of Inorganic Materials, 2005, 20(4): 789–793.[19] Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B, 2003, 107(50): 13871–13879.[20] Bonneviot L, Haller G L. EPR characterization of Ti3+ ions at the metal-support Interface in Pt/TiO2 catalysts. J. Catal., 1988, 113(1): 96–105.[21] Heller A, Degani Y, Johnson D W Jr, et al. Controlled suppression and enhancement of the photoactivity of titanium dioxide (rutile) pigment. J. Phys. Chem., 1987, 91(23): 5987–5991. |