[1] Levison L M, Philipp H R. ZnO varistor–a review. American Ceramic Society Bulletin, 1986, 65(4): 639–646.[2] Gupta T K. Application of zinc oxide varistors. Journal of the American Ceramic Society, 1990, 73(7): 1817–1840.[3] Gupta T K, Miller A C. Improved stability of ZnO varistor via donor and acceptor doping at the grain boundary. Journal of Materials Research, 1988, 3(4): 745–754.[4] WANG Lan-Yi, XU Zheng-Kui, TANG Guo-Yi. The development trends of ZnO varistor ceramic powders. Journal of Functional Materials, 2008, 39(8): 1237–1241.[5] 王振林, 李盛涛. 氧化锌压敏陶瓷制造及应用. 北京: 科学出版社, 2009: 199–276.[6] Milo?evi? O, Uskokovi? D, Karanovi?, L J, et al. Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process. Journal of Materials Science, 1993, 28(19): 5211–5217.[7] LIU Su-Qin, HUANG Ke-Long, SONG Zhi-Fang, et al. Preparation of rare earth oxide doped ZnO varistor by Sol-Gel and its electrical properties. Journal of Inorganic Materials, 2000, 15(2): 376–380.[8] Zhang J C, Cao S X, Zhang R Y, et al. Effect of fabrication conditions on I-V properties for ZnO varistor with high concentration additives by Sol-Gel technique. Current Applied Physics, 2005, 5(4): 381–386.[9] PENG Zhong-Dong, YANG Jian-Hong, ZOU Zhong, et al. Thermodynamic analysis on preparing doped zinc oxide varistor ceramic powders by coprecipitation process. Journal of Inorganic Materials, 1999, 14(5): 733–738. [10] YUAN Fang-Li, LING Yuan-Bing, LI Jin-Lin, et al. ZnO varistors prepared by chemical coprecipitation powders. Journal of Inorganic Materials, 1998, 13(2): 171–175.[11] Banerjee A, Ramamohan T R, Patni M J. Smart technique for fabrication of zinc oxide varistor. Materials Research Bulletin, 2001, 36(7): 1259–1267.[12] Toplan H O, Karakas Y. Processing and phase evolution in low voltage varistor prepared by chemical processing. Ceramics International, 2001, 27(7): 761–765.[13] Wang M H, Yao C, Zhang N F. Degradation characteristics of low-voltage ZnO varistor manufactured by chemical coprecipitation processing. Journal of Materals Processing Technology, 2008, 202(1): 406–411.[14] Cheng L H, Li G R, Zheng L Y, et al. Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method. Journal of American Ceramic Society, 2010, 93(9): 2522–2525.[15] XIE Jian-Jun, SHI Ying, HU Yao-Ming, et al. Synthesis study of Lu3Al5O12(Ce) nanoscaled powder by coprecipitation. Journal of Inorganic Materials, 2009, 24(1): 79–82.[16] ZHANG Hong, ZHANG Zhe, MA Guo-Qiang, et al. Coprecipitation synthesis and oxide ionic conductivities of Ce0.8Sm0.2O1.9-based nanocomposite materials. Journal of Inorganic Materials, 2009, 24(3): 353–356.[17] YANG Yu-Ling, LI Xue-Ming, FENG Wen-Lin, et al. Synthesis and characteristic of CaMoO4:Eu3+ red phosphor for W-LED by coprecipitation. Journal of Inorganic Materials, 2010, 25(10): 1015–1019. [18] YANG Yan, LI Sheng-Tao. CaCu3Ti4O12 ceramics prepared by coprecipitation method. Journal of Inorganic Materials, 2010, 25(8): 835–839.[19] SHI Ying, CHEN Qi-Wei, SHI Jian-Lin. Effect of precipitants on morphologies of Lu2O3 phospors by coprecipitation process. Journal of Inorganic Materials, 2008, 23(4): 824–828.[20] Subasri R, Asha M, Hembram K, et al. Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications. Materials Chemistry and Physics, 2009, 115(2): 677–684.[21] Anas S, Mangalaraja R V, Poothayal M, et al. Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique. Acta Materials, 2007, 55(17): 5792–5801.[22] WAN Shuai, L? Wen-Zhong. Electrical properties and kinetic of crystalline grain growth of low-voltage ZnO varistor doped with Zn-B glass. Journal of Inorganic Materials, 2010, 25(2): 151–156. |