[1] Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academic/Plenum Publications. New York, 1999.[2] K?tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45(15/16): 2483–2498.[3] Wei D P, Ng T W. Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem. Commun., 2009, 11(10): 1996–1999.[4] Su Y F, Wu F, Bao L Y, et al. RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Materials. 2007, 22(1): 53–57.[5] Kuratani K, Kiyobayashi T, Kuriyama N. Influence of the mesoporous structure on capacitance of the RuO2 electrode. J. Power Sources. 2009, 189(2): 1284–1291.[6] Seo M J, Saouab A, Park S J. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites. Materials Science and Engineering B, 2010, 167(1): 65–69.[7] Murakami Y, Kondo T, Shimoda Y, et al. Effects of rare earth chlorides on preparation of porous ruthenium oxide electrode. J. Alloys and Compounds, 1996, 239(1): 111–113.[8] Gao B, Zhang X G, Yuan C Z, et al. Amorphous Ru1?yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors. Electrochim. Acta, 2006, 52(3): 1028–1032.[9] Cheng J, Cao G P, Yang Y S. Characterization of Sol-Gel-derived NiOx xerogels as supercapacitors. J. Power Sources, 2006, 159(1): 734–741. [10] GAN Wei-ping, MA He-ran, LI Xiang. Preparation and performance of (RuO2/Co3O4)·nH2O composite films in super capacitor. Journal of Inorganic Materials, 2011, 26(8): 823–828.[11] Gujar T P, Shinde V R, Lokhande C D, et al. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, 161(2): 1479–1485.[12] Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J. Solid State Chem., 1999, 148(1): 81–84.[13] Yu P, Zhang X, Che Y, et al. Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater. Chem. Phys., 2009, 118(2/3): 303–307.[14] Johnson C S, Dees D W, Mansuetto M F, et al. Structural and electrochemical studies of α-manganese dioxide (α-MnO2). J. Power Sources, 1997, 68(2): 570–577.[15] Feng Z P, Li G R, Zhong J H, et al. MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem. Commun., 2009, 11(3): 706–710.[16] Lei Y, Daffos B, Taberna P L, et al. MnO2-coated Ni nanorods: enhanced high rate behavior in pseudo-capacitive supercapacitors. Electrochim. Acta, 2010, 55(25): 7454–7459.[17] Zhang H, Cao G P, Wang Z Y, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem. Commun., 2008, 10(7): 1056–1059.[18] Soriano L, Addate M, Pen P, et al. The electronic structure of TiN and VN: X-ray electron spectra compared to band structure calculations. Solid State Communications, 1997, 102(4): 291–296.[19] Sakamoto T, Ogawa H, Suefuji H, et al. 989-56 Serial changes of plasma vitronectin level in patients with acute myocardial infarction: possible role of VN as a scavenger of plasminogen activator inhibitor-1. J. American College of Cardiology., 1995, 25(2): 311A.[20] Griffiths C D, Eldershaw P D, Geraghty D P, et al. Capsaicin-induced biphasic oxygen uptake in rat muscle: antagonism by capsazepine and ruthenium red provides further evidence for peripheral vanilloid receptor subtypes (VN1/VN2). Life Sciences, 1996, 59(2): 105–117.[21] Lao J J, Han Z H, Tian Z W, et al. Mechanical property investigation of AlN/VN nanomultilayers with microindentation technique. Mater. Lett., 2004, 58(6): 859–862.[22] Choi D, Kumta P N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Electrochem. Solid State Lett., 2005, 8: A418–A422.[23] Choi D, Blomgren G E, Kumta P N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors Adv. Mater., 2006, 18(9): 1178–1182. [24] Zhou X P, Chen H Y, Shu D, et al. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids., 2009, 70(2): 495–500.[25] Glushenkov A M, Hulivova-Jurcakova D, Llewellyn D, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater., 2010, 22(3): 914–921.[26] Cheng F K, He C, Shu D, et al. Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater. Chem. Phys., 2011, 131(1/2): 268–273. |