Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (12): 1233-1242.DOI: 10.3724/SP.J.1077.2012.12111
• Review • Next Articles
WANG Fang1,2,3, LIANG Chun-Sheng1,2,3, XU Da-Liang1,2,3, CAO Hui-Qun1,2,3, SUN Hong-Yuan1,2,3, LUO Zhong-Kuan1,2,3
Received:
2012-02-24
Revised:
2012-05-08
Published:
2012-12-20
Online:
2012-11-19
About author:
WANG Fang. E-mail: wfang7373@yahoo.com.cn
Supported by:
Shenzhen Key Laboratory of New Lithium-ion Battery and Mesoporous Materials (20110205); Shenzhen Science and Technology Fund (ZYA201106090033A)
CLC Number:
WANG Fang, LIANG Chun-Sheng, XU Da-Liang, CAO Hui-Qun, SUN Hong-Yuan, LUO Zhong-Kuan. Research Progress of Lithium-air Battery[J]. Journal of Inorganic Materials, 2012, 27(12): 1233-1242.
Add to citation manager EndNote|Ris|BibTeX
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367.[2] Beattie S D, Manolescu D M, Blair S L. High-capacity lithium–air cathodes. J. Electrochem. Soc., 2009, 156(1): A44–A47.[3] Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., 2010, 1(14): 2193–2203.[4] Abraham K M, Jiang Z. A Polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc., 1996, 143(1): 1–5.[5] Ogasawara T, Debart A, Bruce P G, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[6] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935.[7] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries. J. Electrochem. Soc., 2012, 159(2): R1–R30.[8] Younesi S R, Urbonaite S, Bj?refors F, et al. Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources, 2011, 196(22): 9835–9838.[9] Sandhu S S, Fellner J P, Brutchen G W. Diffusion-limited model for a lithium/air battery with an organic electrolyte. J. Power Sources, 2007, 164(1): 365–371.[10] Mirzaeian M, Hal P J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009, 54(28): 7444–7451.[11] Tran C, Yang X Q, Qu D Y. Investigation of the gas-diffusion-electrode used as lithium-air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J. Power Sources, 2010, 195(7): 2057–2063.[12] Zheng J P, Liang R Y, Hendrickson M, et al. Theoretical energy density of Li–air batteries. J. Electrochem. Soc., 2008, 155(6): A432–A437.[13] Xiao J, Wang D H, Xu W, et al. Optimization of air electrode for Li-air batteries. J. Electrochem. Soc., 2010, 157(4): A487–A492.[14] Zhang J G, Wang D Y, Xu W, et al. Ambient operation of Li/Air batteries. J. Power Sources, 2010, 195(13): 4332–4337.[15] Eswaran M, Munichandraiah N, Scanlon L G. High capacity Li–O2 cell and electrochemical impedance dpectroscopy dtudy. Electrochem. Solid State Lett., 2010, 13(9): A121–A124.[16] Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J. Power Sources, 2010, 195(5): 1370–1374.[17] Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun., 2009, 11(6): 1127–1130.[18] Xiao J, Xu W, Wang D Y, et al. Hybrid air-electrode for Li/Air batteries. J. Electrochem. Soc., 2010, 157(3): A294–A297.[19] Kichambare P, Kumar J, Rodrigues S, et al. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J. Power Sources, 2011, 96(6): 3310–3316.[20] Zhang G Q, Zheng J P, Liang R, et al. α-MnO2 carbon nanotube carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J. Electrochem. Soc., 2011, 158(7): A822–A827.[21] Zhang G Q, Zheng J P, Liang R, et al. Lithium–air batteries using SWNTCNF buckypapers as air electrodes. J. Electrochem. Soc., 2010, 157(8): A953–A956.[22] Li Y L, Wang J J, Li X F, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem. Commun., 2011, 13(7): 668–672.[23] Li J X, Wang N, Zhao Y, et al. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem. Commun., 2011, 13(7): 698–700.[24] Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 2009, 19(17): 2782–2789.[25] Li Y L, Wang J J, Li X F, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun., 2011, 47(33): 9438–9440.[26] Sun B, Wang B, Su D W, et al. Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 2012, 50(2): 727–733.[27] Wang L, Zhao X, Lu Y H, et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc., 2011, 158(12): A1379–A1382.[28] Dong S M, Chen X, Zhang K J, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chem. Commun., 2011, 47(40): 11291–11293.[29] Xiao J, Mei D H, Li X L, et al. Hierarchically porous graphene asa lithium air battery electrode. Nano Lett., 2011, 11(11): 5071–5078.[30] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[31] Débart A, Bao J L, Bruce P G, et al. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sources, 2007, 174(2): 1177–1182.[32] Lu Y C, Gasteiger H A, Yang S H, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State Lett., 2010, 13(6): A69–A72.[33] Kraytsberg A, Ein-Eli Y. Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources, 2011, 196(3): 886–893.[34] Andrei P, Zheng J P, Hendrickson M, et al. Some possible approaches for improving the energy density of Li-air batteries. J. Electrochem. Soc., 2010, 157(12): A1287–A1295.[35] Read J. Characterization of the lithium/oxygen organic electrode battery. J. Electrochem. Soc., 2002, 149(9): A1190–A1195.[36] Seriani N. Ab initio thermodynamics of lithium oxides from bulk phases to nanoparticles. Nanotech., 2009, 20(44): 1–7.[37] Lu Y C, Gasteiger H A, Crumlin E, et al. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc., 2010, 157(9): A1016–A1025.[38] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles a highly active bifunctional electrocatalyst for rechargeable lithium- air batteries. J. Am. Chem. Soc., 2010, 132(35): 12170–12171.[39] Arakawa M, Yamaki J. Anodic oxidation of propylene carbonateand ethylene carbonate on graphite electrodes. J. Power Sources, 1995, 54(2): 250–254.[40] Kanamura K, Umegaki T, Ohashi M, et al. Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries. Electrochimica Acta, 2001, 47(3): 433–439.[41] Ida S, Thapa A K, Hidaka Y, et al. Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. J. Power Sources, 2012, 203(7): 159–164.[42] Cui Y M, Wen Z Y, Liu Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries. Energy Environ. Sci., 2011, 4(11): 4727–4734.[43] Chen J Z, Hummelsh?j J S, Thygesen K S, et al. The role of transition metal interfaces on the electronic transport in lithium-air batteries. Catalysis Today, 2011, 165(1): 2–9.[44] Liu H, Xing Y C. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochem. Commun., 2011, 13(6): 646–649.[45] Thapa A K, Ishihara T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery. J. Power Sources, 2011, 196(16): 7016–7020.[46] Thapa A K, Hidaka Y, Hagiwara H, et al. Mesoporous ?-MnO2 air electrode modified with Pd for rechargeability in lithium-Air battery. J. Electrochem. Soc., 2011, 158(12): A1483–A1489.[47] Cheng H, Scott K. Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide?. Applied Catalysis B: Environmental, 2011, 108-109(6): 140–151.[48] Trahey L, Johnson C S, Bruce P G, et al. Activated lithium-metal-oxides as catalytic electrodes for Li-O2 cells. Electrochem. Solid State Lett., 2011, 14(5): A64–A66.[49] Zhang G Q, Hendrickson M, Plichta E J, et al. Preparation, characterization and electrochemical catalytic properties of hollandite Ag2Mn8O16 for Li-air batteries. J. Electrochem. Soc., 2012, 159(3): A310–A314.[50] Zhu A L, Wang H J, Qu W, et al. Low temperature pyrolyzed cobalt tetramethoxy phenylporphyrin catalyst and its applications as an improved catalyst for metal air batteries. J. Power Sources, 2010, 195(17): 5587–5595.[51] Zhang S S, Ren X M, Read J. Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochimica Acta, 2011, 56(12): 4544–4548.[52] Freunberger S A, Chen Y H, Bruce P G, et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed., 2011, 50(37): 8609–8613.[53] Zhang S S, Foster D, Read J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources, 2010, 195(4): 1235–1240.[54] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 2004, 104(10): 4303–4418.[55] Xu W, Xiao J, Zhang J, et al. Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J. Electrochem. Soc., 2009, 156(10): A773–A779.[56] Xu W, Xiao J, Wang D Y, et al. Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J. Electrochem. Soc., 2010, 157(2): A219–A224.[57] Xu W, Xiao J, Zhang J G, et al. Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem. Solid State Lett., 2010, 13(4): A48–A51.[58] Xu W, Viswanathan V V, Wang D Y, et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources, 2011, 196(8): 3894–3899.[59] Xiao J, Hu J Z, Xu W, et al. Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J. Power Sources, 2011, 196(13): 5674–5678.[60] Xu W, Xu K, Viswanathan V V, et al. Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J. Power Sources, 2011, 196(22): 9631–9639.[61] Freunberger S A, Chen Y H, Bruce P G, et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc., 2011, 133(20): 8040–8047.[62] McCloskey B D, Bethune D S, Luntz A C, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett., 2011, 2(10): 1161–1166.[63] Lu Y C, Kwabi D G, Yang S H. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci., 2011, 4(8): 2999–3007.[64] Laoire C ?, Plichta E J, Abraham K M, et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C, 2010, 114(19): 9178–9186.[65] Laoire C ?, Plichta E J, Abraham K M, et al. Rechargeable lithium/ TEGDME-LiPF6/O2 battery. J. Electrochem. Soc., 2011, 158(3): A302–A308.[66] Peng Z Q, Freunberger S A, Bruce P G, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed., 2011, 50(28): 6351–6355.[67] Kuboki T, Okuyama T, Ohsaki T, et al. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources, 2005, 146(l/2): 766–769.[68] Ye H, Huang J, Xu J J, et al. Li Ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J. Electrochem. Soc., 2007, 154(11): A1048–A1057.[69] Zhang D, Li R S, Yu A S, et al. Novel composite polymer electrolyte for lithium air batteries. J. Power Sources, 2010, 195(4): 1202–1206.[70] Giorgio F D, Soavi F, Mastragostino M. Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes. Electrochem. Commun., 2011, 13(10): 1090–1093.[71] Zhang J, Xu W, Liu W. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. J. Power Sources, 2010, 195(21): 7438–7444.[72] Zhang J, Xu W, Liu W, et al. Air dehydration membranes for nonaqueous lithium-air batteries. J. Electrochem. Soc., 2010, 157(8): A940–A946.[73] Crowther O, Meyer B, Salomon M, et al. Primary Li-air cell development. J. Power Sources, 2011, 196(3): 1498–1502.[74] Crowther O, Keeny D, Moureau D M, et al. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J. Power Sources, 2012, 202(6): 347–351.[75] Imanishi N, Hasegawa S, Zhang T, et al. Lithium anode for lithium- air secondary batteries. J. Power Sources, 2008, 185(2): 1392–1397.[76] Zhang T, Imanishi N, Hasegawa S, et al. Li/polymer electrolyte/ water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc., 2008, 155(12): A965–A969.[77] Zhang T, Imanishi N, Shimonishi Y, et al. stability of a water- stable lithium metal anode for a lithium–air battery with acetic acid-water solutions. J. Electrochem. Soc., 2010, 157(2): A214–A218.[78] Zhang T, Imanishi N, Shimonishi Y, et al. A novel high energy density rechargeable lithium-air battery. Chem. Comun., 2010, 46(10): 1661–1663.[79] Kumar J, Kumar B. Development of membranes and a study of their interfaces for rechargeable lithium-air battery. J. Power Sources, 2009, 194(2): 1113–1119.[80] Kumar B, Kumar J, Leese R, et al. A solid-state, rechargeable, long cycle life lithium–Air Battery. J. Electrochem. Soc., 2010, 157(1): A50–A54.[81] Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources, 2010, 195(1): 358–361.[82] Wang Y G, He P, Zhou H S. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci., 2011, 4(12): 4994–4999. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | FANG Renrui, REN Kuan, GUO Zeyu, XU Han, ZHANG Woyu, WANG Fei, ZHANG Peiwen, LI Yue, SHANG Dashan. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses [J]. Journal of Inorganic Materials, 2023, 38(4): 399-405. |
[8] | CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 421-428. |
[9] | QIU Haiyang, MIAO Guangtan, LI Hui, LUAN Qi, LIU Guoxia, SHAN Fukai. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 406-412. |
[10] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[11] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[12] | WANG Lei, LI Jianjun, NING Jun, HU Tianyu, WANG Hongyang, ZHANG Zhanqun, WU Linxin. Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism [J]. Journal of Inorganic Materials, 2023, 38(4): 469-476. |
[13] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[14] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[15] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||