[1] Simonin L, Lafont U, Tabrizi N, et al. Sb/O nano-composites produced via spark discharge generation for Li-ion battery anodes. Journal of Power Sources, 2007, 174(2): 805-809.[2] Hassoun J, Derrien G, Panero S, et al. A SnSb–C nanocomposite as high performance electrode for lithium ion batteries. Electrochimica Acta, 2009, 54(19): 4441-4444.[3] Xie J, Zhao X B, Cao G S, et al. Solvothermal synthesis and electrochemical performances of nanosized CoSb3 as anode materials for Li-ion batteries. Journal of Power Sources, 2005, 140(2): 350-354.[4] Park C M, Sohn H J. Electrochemical characteristics of TiSb2 and Sb/TiC/C nanocomposites as anodes for rechargeable Li-ion batteries. Journal of The Electrochemical Society, 2010, 157(1): A46-A49.[5] He X M, Pu W H, Wang L, et al. Synthesis of nano Sb-encapsulated pyrolytic polyacrylonitrile composite for anode material in lithium secondary batteries. Electrochimica Acta, 2007, 52(11): 3651-3653.[6] 苏树发, 曹高劭, 赵新兵. 不同方法制备的锑负极材料性能研究. 科学通报, 2004, 49(15): 1565-1568.[7] Bryngelsson H, Eskhult J, Nyholm L, et al. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochimica Acta, 2008, 53(24): 7226-7234.[8] 赖新方, 赵灵智, 汝 强, 等. 溅射时间对Sb薄膜负极材料循环性能的影响. 电源技术, 2010, 34(4): 379-381.[9] 唐致远, 张 莹. 锂离子蓄电池锑基负极材料研究进展. 电源技术, 2007, 31(2): 164-166.[10] Li H, Huang X J, Chen L Q. Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics, 1999, 123(1-4): 189-197.[11] Hu Y H, Zhang H H, Yang H M, et al. Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of Alloys and Compounds, 2007, 428(1/2): 327-331. |