[1] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007, 90(5): 1347-1364.[2] Thévenot F. Boron carbide--a comprehensive review. J. Eur. Ceram. Soc., 1990, 6(4): 205-225.[3] Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc., 2008, 28(5): 1105-1109.[4] Becher P F. Microstructural design of toughened ceramics. J. Am. Ceram. Soc., 1991, 74(2): 255-269.[5] Padture N P. In situ-toughened silicon-carbide. J. Am. Ceram. Soc., 1994, 77(2): 519-523.[6] Yang F Y, Zhang X H, Han J C, et al. Preparation and properties of ZrB2-SiC ceramic composites reinforced by carbon nanotubes. J. Inorg. Mater., 2008, 23(5): 950-954.[7] Zhu T, Xu L, Zhang X H, et al. Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites. J. Eur. Ceram. Soc., 2009, 29(13): 2893-2901.[8] Zhang G J, Deng Z Y, Kondo N, et al. Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc., 2000, 83(9): 2330-2332.[9] Zhang X H, Li W J, Hong C Q, et al. Microstructure and mechanical properties of hot pressed ZrB2-SiCp-ZrO2 composites. Mater. Lett., 2008, 62(15): 2404-2406.[10] Wu H T, Zhang W G. Fabrication and properties of ZrB2-SiC-BN machinable ceramics. J. Eur. Ceram. Soc., 2010, 30(4): 1035-1042.[11] Baik S, Becher P F. Effect of oxygen contamination on densification of TiB2. J. Am. Ceram. Soc., 1987, 70(8): 527-530.[12] Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. J. Am. Ceram. Soc., 2006, 89(5): 1544-1550.[13] Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless sintering of zirconium diboride: particle size and additive effects. J. Am. Ceram. Soc., 2008, 91(5): 1398-1404.[14] Brynestad J, Bamberger C E, Land J F, et al. Removal of oxide contamination from TiB2 powders. J. Am. Ceram. Soc., 1983, 66(11): C215-C216.[15] Zhang H, Yan Y J, Huang Z R, et al. Pressureless sintering of ZrB2-SiC ceramics: the effect of B4C content. Scr. Mater., 2009, 60(7): 559-562.[16] Yan Y J, Zhang H, Huang Z R, et al. In situ synthesis of ultrafine ZrB2-SiC composite powders and the pressureless sintering behaviors. J. Am. Ceram. Soc., 2008, 91(4): 1372-1376.[17] Zou J, Zhang G J, Kan Y M, et al. Pressureless densification of ZrB2-SiC composites with vanadium carbide. Scr. Mater., 2008, 59(3): 309-312.[18] Wang X G, Guo W M, Zhang G J. Pressureless sintering mechanism and microstructure of ZrB2-SiC ceramics doped with boron. Scr. Mater., 2009, 61(2): 177-180.[19] Wang X G, Liu J X, Kan Y M, et al. Slip casting and pressureless sintering of ZrB2-SiC ceramics. J. Inorg. Mater., 2009, 24(4): 831-835.[20] Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc., 2006, 89(2): 450-456.[21] Zou J, Zhang G J, Kan Y M, et al. Hot-pressed ZrB2-SiC ceramics with VC addition: chemical reactions, microstructures, and mechanical properties. J. Am. Ceram. Soc., 2009, 92(12): 2838-2846.[22] Zou J, Zhang G J, Sun S K, et al. ZrO2 removing reactions of Groups IV-VI transition metal carbides in ZrB2 based composites. J. Eur. Ceram. Soc., 2011, 31(3): 421-427.[23] Zou J, Zhang G J, Kan Y M, et al. Pressureless sintering mechanisms and mechanical properties of hafnium diboride ceramics with pre-sintering heat treatment. Scr. Mater., 2010, 62(3): 159-162.[24] Zou J, Zhang G J, Kan Y M. Pressureless densification and mechanical properties of hafnium diboride doped with B4C: from solid state sintering to liquid phase sintering. J. Eur. Ceram. Soc., 2010, 30(12): 2699-2705.[25] Lee H, Speyer R F. Pressureless sintering of boron carbide. J. Am. Ceram. Soc., 2003, 86(9): 1468-1473.[26] Cho N T, Bao Z H, Speyer R F. Density- and hardness-optimized pressureless sintered and post-hot isostatic pressed B4C. J. Mater. Res., 2005, 20(8): 2110-2116.[27] Zhang G J, Ando M, Ohji T, et al. High-performance boron nitride- containing composites by reaction synthesis for the applications in the steel industry. Int. J. Appl. Ceram. Technol., 2005, 2(2): 162-171.[28] Hagio T, Kobayashi K, Yoshida H, et al. Sintering of the mechanochemically activated powders of hexagonal boron-nitride. J. Am. Ceram. Soc., 1989, 72(8): 1482-1484.[29] Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J. Am. Ceram. Soc., 2006, 89(7): 2320-2322.[30] Otani S, Korsukova M M, Mitsuhashi T. Preparation of HfB2 and ZrB2 single crystals by the floating-zone method. J. Cryst. Growth, 1998, 186(4): 582-586.[31] Tao X Y, Dong L X, Wang X N, et al. B4C- nanowires/carbon-microfiber hybrid structures and composites from cotton t-shirts. Adv. Mater., 2010, 22(18): 2055-2059. [32] Zhang G J, Yue X M, Jin Z Z. Preparation and microstructure of TiB2-TiC-SiC platelet-reinforced ceramics by reactive hot-pressing. J. Eur. Ceram. Soc., 1996, 16(10): 1145-1148.[33] Zhang G J, Jin Z Z, Yue X M. A multilevel ceramic composite of TiB2-Ti0.9W0.1C-SiC prepared by in situ reactive hot pressing. Mater. Lett., 1996, 28(1/2/3): 1-5.[34] Zhang G J, Yue X M, Jin Z Z, et al. In-situ synthesized TiB2 toughened SiC. J. Eur. Ceram. Soc., 1996, 16(4): 409-412.[35] Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800℃. J. Am. Ceram. Soc., 2006, 89(9): 2967-2969.[36] Zou J, Zhang G J, Kan Y M. Formation of tough interlocking microstructure in ZrB2-SiC-based ultrahigh-temperature ceramics by pressureless sintering. J. Mater. Res., 2009, 24(7): 2428-2434.[37] Zou J, Sun S K, Zhang G J, et al. Chemical reactions, anisotropic grain growth and sintering mechanisms of self-reinforced ZrB2–SiC doped with WC. J. Am. Ceram. Soc., 2011, 94(5): 1575-1583.[38] Wu W W, Wang Z, Zhang G J, et al. ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scr. Mater., 2009, 61(3): 316-319.[39] Niihara K. Sustainable Materials Development Based on Nanocomposite Structures for the 21th Centry, Proceedings of the 6th International Symposium on Eco-Materials Proceding & Design. 2005, Korea, 41.[40] Kusunose T, Choa Y H, Sekino T, et al. Mechanical properties of Si3N4/BN composites by chemical processing. Key Eng. Mater., 1999, 161-163: 475-480.[41] Kusunose T, Sekino T, Choa Y H, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85(11): 2678-2688.[42] Kusunose T, Sekino T, Choa Y H, et al. Machinability of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85(11): 2689-2695.[43] Zhang G J, Yang J F, Ando M, et al. Mullite-boron nitride composite with high strength and low elasticity. J. Am. Ceram. Soc., 2004, 87(2): 296-298.[44] Wang X D, Qiao G J, Jin Z H. Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J. Am. Ceram. Soc., 2004, 87(4): 565-570.[45] Kusunose T, Sekino T, Ando Y. Synthesis of SiC/BN nanocomposite powders by carbothermal reduction and nitridation of borosilicate glass, and the properties of their sintered composites. Nanotechnology, 2008, 19(27): 275603.[46] Li J G, Gao L. Preparation of h-BN nano-film coated alpha-Si3N4 composite particles by a chemical route. J. Mater. Chem., 2003, 13(3): 628-630.[47] Gao L, Jin X H, Li J G, et al. BN/Si3N4 nanocomposite with high strength and good machinability. Mater. Sci. Eng. A, 2006, 415(1/2): 145-148.[48] Zhang G J, Yang J F, Ando M, et al. React |