Journal of Inorganic Materials

• Research Paper • Previous Articles     Next Articles

Fatigue Behavior of 2D C/SiC Composites in Water-vapor Containing Environment at 1300℃

LIU Chi-Dong1, CHENG Lai-Fei1, MEI Hui1, LUAN Xin-Gang1, ZHOU Jun2   

  1. 1. National Key Lab of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China; 2. Defense Science and Technology Academy, Northwestern Polytechnical University, Xi’an 710072, China
  • Received:2007-08-21 Revised:2007-10-14 Published:2008-07-20 Online:2008-07-20

Abstract: Tension-tension fatigue experiments were conducted at room temperature and in water vapor containing environment at 1300℃, using a stress ratio of 0.1 at sinusoidal frequency of 3Hz. The results show that the fatigue limit (based on 105 cycles) in the above two environments are 244.8MPa and 90.8MPa, respectively. Oxidation is the dominant damage mechanism. Based on the microstructure observation of the fracture surfaces, it is concluded that in water-vapor containing environment at 1300℃, sufficiently high stress remarkably weakens the sealing effect of SiO2, which enables the oxidizing species to diffuse through the coating cracks caused by the applied stress. The higher the applied stress, the higher the gaseous diffusivity, the shorter the composite fatigue life.

Key words: 2D C/SiC composites, fatigue, high temperature, oxidation

CLC Number: