无机材料学报 ›› 2024, Vol. 39 ›› Issue (9): 992-1004.DOI: 10.15541/jim20240036

• 综述 • 上一篇    下一篇

硅泥在锂离子电池中的应用研究进展

刘鹏东1(), 王桢2,3,4, 刘永锋3, 温广武1,4()   

  1. 1.山东理工大学 材料科学与工程学院, 淄博 255000
    2.浙江吉利控股集团有限公司博士后科研工作站, 杭州 310000
    3.浙江大学 材料科学与工程学院, 杭州 310000
    4.山东硅纳新材料科技有限公司, 淄博 255000
  • 收稿日期:2024-02-28 修回日期:2024-03-11 出版日期:2024-09-20 网络出版日期:2024-05-08
  • 通讯作者: 温广武, 教授. E-mail: wengw@sdut.edu.cn
  • 作者简介:刘鹏东(1999-), 男, 硕士研究生. E-mail: liupengdong_077@163.com
  • 基金资助:
    山东省自然科学基金(ZR2022QE244);山东省泰山产业领军项目(tscy20230621)

Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries

LIU Pengdong1(), WANG Zhen2,3,4, LIU Yongfeng3, WEN Guangwu1,4()   

  1. 1. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
    2. Postdoctoral Research Workstation of Zhejiang Geely Holding Group Co., Ltd., Hangzhou 310000, China
    3. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310000, China
    4. Shandong Si-Nano Materials Technology Co., Ltd., Zibo 255000, China
  • Received:2024-02-28 Revised:2024-03-11 Published:2024-09-20 Online:2024-05-08
  • Contact: WEN Guangwu, professor. E-mail: wengw@sdut.edu.cn
  • About author:LIU Pengdong (1999-), male, Master candidate. E-mail: liupengdong_077@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2022QE244);Taishan Industrial Entrepreneurship Leading Talents(tscy20230621)

摘要:

光伏切割硅废料——硅泥, 因其低成本、二维片状结构和高比容量(4200 mAh·g-1)的优势成为300 Wh·kg-1以上高能量密度储能电池核心硅碳负极材料的理想原料之一。然而, 硅泥存在成分复杂、粒径较大、导电性差、稳定性低和电化学性能差的问题, 需要进行系统改性处理。本文综述了硅泥在锂离子电池中的应用研究进展。首先, 分析了硅泥中金属杂质和非金属杂质对电池性能的重要影响。其中金属杂质可通过磁选和酸洗去除, 非金属杂质可通过液-液萃取和热处理去除。其次, 详细阐述了纯化后硅泥的原始性能和改性方法。通过硅泥纳米化可以抑制其膨胀, 其中包括研磨、刻蚀、电热冲击和合金-脱合金等方式; 通过直接元素掺杂硅和掺杂硅表面碳层来提高导电性; 通过构建惰性层、导电层和一定作用的官能团等表面改性提高稳定性; 还可以通过硅碳复合获得稳固的机械支撑和保护。最后, 提出了基于硅泥为原料的硅基负极面临的挑战和研发方向, 展望了未来发展前景, 旨在为硅泥变废为宝提供参考, 推动高能量密度锂离子电池快速发展。

关键词: 硅泥, 光伏切割硅废料, 废硅粉, 硅碳复合, 二维硅, 锂离子电池, 综述

Abstract:

Silicon sludge, the photovoltaic cutting silicon waste, has become one of the expected raw materials for the key silicon carbon anode materials used in high energy density batteries above 300 Wh·kg-1 due to its low cost, two-dimensional lamellar structure and ultrahigh specific capacity (4200 mAh·g-1). However, silicon sludge requires systematic modification because of its challenges such as complex composition, large particle size, poor electrical conductivity, low stability and poor electrochemical performance. This paper systematically reviews the application status and research progress of silicon sludge in lithium-ion batteries. Firstly, the important effects of metal and non-metal impurities on battery performance are summarized, in which metal impurities are normally removed by magnetic separation and acid pickling, and non-metallic impurities are removed by liquid-liquid extraction and heat treatment. Secondly, detailed elucidation about the initial performance and modification methods of the silicon sludge is provided. Concretely, silicon sludge can be nano-sized to reduce expansion by grinding, etching, electrothermal shock, and alloy dealloying, enhance electrical conductivity through doping the intrinsic silicon and doping the carbon layer on the silicon surface, improve stability through the construction of inert layer, conductive layer and functional group, and obtain mechanical support and protection through silicon-carbon composite. Finally, the challenges, development directions and future prospects of silicon-based anode based on silicon sludge are put forward, aiming to provide a reference for converting silicon sludge into treasure and promote the rapid development of high energy density lithium-ion batteries.

Key words: silicon sludge, photovoltaic cutting silicon waste, silicon powder waste, silicon carbon composite, two-dimensional silicon, lithium-ion battery, review

中图分类号: