无机材料学报 ›› 2024, Vol. 39 ›› Issue (7): 828-834.DOI: 10.15541/jim20230578

• 研究论文 • 上一篇    下一篇

钙钛矿太阳能电池纳米纤维改性电子传输层研究

肖梓晨1,2,3(), 何世豪1,2,3, 邱诚远1,2,3, 邓攀1,2,3, 张威1,2,3, 戴维德仁1,2,3, 缑炎卓1,2,3, 李金华1,2,3, 尤俊1,2,3, 王贤保1,2,3(), 林俍佑1,2,3()   

  1. 1.湖北大学 功能材料绿色制备与应用教育部重点实验室, 武汉 430062
    2.湖北大学 高分子材料湖北省重点实验室, 武汉 430062
    3.湖北大学 材料科学与工程学院, 武汉 430062
  • 收稿日期:2023-12-14 修回日期:2024-02-27 出版日期:2024-07-20 网络出版日期:2024-03-08
  • 通讯作者: 王贤保, 教授. E-mail: wxb@hubu.edu.cn;
    林俍佑, 副教授. E-mail: Liangyou_Lin@hubu.edu.cn
  • 作者简介:肖梓晨(1999-), 女, 硕士研究生. E-mail: zichen_xiao@qq.com
  • 基金资助:
    湖北省自然科学基金(202211301201002);武汉市科技计划(202211301251333)

Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells

XIAO Zichen1,2,3(), HE Shihao1,2,3, QIU Chengyuan1,2,3, DENG Pan1,2,3, ZHANG Wei1,2,3, DAI Weideren1,2,3, GOU Yanzhuo1,2,3, LI Jinhua1,2,3, YOU Jun1,2,3, WANG Xianbao1,2,3(), LIN Liangyou1,2,3()   

  1. 1. Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei University, Wuhan 430062, China
    2. Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
    3. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received:2023-12-14 Revised:2024-02-27 Published:2024-07-20 Online:2024-03-08
  • Contact: WANG Xianbao, professor. E-mail: wxb@hubu.edu.cn;
    LIN Liangyou, associate professor. E-mail: Liangyou_Lin@hubu.edu.cn
  • About author:XIAO Zichen (1999-), female, Master candidate. E-mail: zichen_xiao@qq.com
  • Supported by:
    Natural Science Foundation of Hubei Province of China(202211301201002);Wuhan Municipal Science and Technology Bureau of China(202211301251333)

摘要:

二氧化锡(SnO2)由于具有高透光率、高电子迁移率、良好的紫外稳定性以及可低温加工等优势, 作为电子传输材料在钙钛矿太阳能电池(PSC)中得到广泛应用。然而, 用商业胶体溶液制备的SnO2电子传输层仍然存在易团聚、缺陷多、能级不匹配等问题, 限制了器件性能和稳定性。本研究将一种高分子甲壳素纳米纤维(1,2-二苯甲酰氧基苯基甲壳素, DC)引入到SnO2前驱液中来改善SnO2薄膜质量, 系统研究了DC对前驱液、薄膜和器件性能的影响。实验结果表明, DC添加剂能够有效抑制纳米颗粒团聚, 使前驱液分散得更均匀。改善后的SnO2薄膜的粗糙度更小, 能更好地被钙钛矿溶液浸润, 有利于SnO2与钙钛矿层形成更紧密的接触。同时, SnO2薄膜中的氧空位缺陷被有效钝化, 缺陷占比降低至30%, 进一步提升了薄膜质量。改进后SnO2电子传输层与钙钛矿层的能级匹配性更好, 载流子提取和传输性能得到优化。DC改性后的PSC性能得到显著提升, 最优器件的光电转换效率达到19.11%。本工作不仅解决了SnO2电子传输层在制备过程中的团聚问题, 而且为提高PSC能提供了理论指导与方法。

关键词: 二氧化锡, 电子传输层, 钙钛矿太阳能电池, 高分子, 光电转换效率

Abstract:

Tin dioxide (SnO2) is widely used in perovskite solar cell (PSC) as an electron transport material due to its high transmittance, high electron mobility, good UV stability, and low-temperature processing. However, SnO2 electron transport layer prepared from commercial colloidal solution still faces some challenges such as easy agglomeration, defects, and energy level mismatch, limiting its performance and stability. This study improved the quality of SnO2 films by introducing a polymer chitin nanofiber (1,2-dibenzoyloxyphenylchitin, DC) into the SnO2 precursor solution, and systematically studied the effect of DC on the precursor solution, film and device performance. Experimental results showed that DC additive could effectively inhibit the agglomeration of SnO2 nanoparticles, ensuring a more homogeneous dispersion in the precursor solution. The improved SnO2 films had smaller roughness and could be better wetted by perovskite solution, which is beneficial to closer contact with the perovskite layer. Simultaneously, the oxygen vacancy defects in the SnO2 films were effectively passivated, and the proportion of defects was reduced to 30%, further improving the quality of the films. Based on the improved energy level matching between the SnO2 electron transport layer and the perovskite layer, the carrier extraction and transport performance was optimized. The performance of DC-modified PSC was significantly improved, and the photoelectric conversion efficiency of the optimal device reached 19.11%. This work not only overcomes the agglomeration problem of the SnO2 electron transport layer during the preparation process, but also provides theoretical guidance and method for improving the performance of perovskite solar cells.

Key words: tin dioxide, electron transport layer, perovskite solar cell, polymer, photoelectric conversion efficiency

中图分类号: