无机材料学报 ›› 2024, Vol. 39 ›› Issue (6): 697-706.DOI: 10.15541/jim20230544

• 研究论文 • 上一篇    下一篇

B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响

刘国昂(), 王海龙(), 方成(), 黄飞龙, 杨欢   

  1. 郑州大学 材料科学与工程学院, 郑州 450001
  • 收稿日期:2023-11-28 修回日期:2024-01-27 出版日期:2024-06-20 网络出版日期:2024-01-31
  • 通讯作者: 王海龙, 教授. E-mail: 119whl@zzu.edu.cn;
    方成, 博士. E-mail: fangcheng@zzu.edu.cn
  • 作者简介:刘国昂(2000-), 男, 硕士研究生. E-mail: liuguoang2022@163.com
  • 基金资助:
    国家自然科学基金(U23A20562);国家自然科学基金(52172075);国家自然科学基金(52302074);河南省杰出青年基金(202300410355);河南省高校科技创新团队支持计划(23IRTSTHN001);河南省自然科学基金(232300421323);中国博士后科学基金(2021M702931)

Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics

LIU Guoang(), WANG Hailong(), FANG Cheng(), HUANG Feilong, YANG Huan   

  1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2023-11-28 Revised:2024-01-27 Published:2024-06-20 Online:2024-01-31
  • Contact: WANG Hailong, professor. E-mail: 119whl@zzu.edu.cn;
    FANG Cheng, PhD. E-mail: fangcheng@zzu.edu.cn
  • About author:LIU Guoang (2000-), male, Master candidate. E-mail: liuguoang2022@163.com
  • Supported by:
    National Natural Science Foundation of China(U23A20562);National Natural Science Foundation of China(52172075);National Natural Science Foundation of China(52302074);Outstanding Youth Foundation of Henan Province(202300410355);Program for Innovative Research Team in Science and Technology in Universities of Henan Province(23IRTSTHN001);Natural Science Foundation of Henan Province(232300421323);China Postdoctoral Science Foundation(2021M702931)

摘要:

新型高熵硼化物陶瓷具有优异的高温稳定性、低热导率等优点, 在高温热防护领域具有广阔的应用前景。本研究采用硼/碳热还原法结合热压烧结技术在1900 ℃下制备了(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C高熵硼化物陶瓷, 并研究了B4C第二相含量对其力学及抗氧化性能的影响规律。结果表明, B4C均匀分布在高熵基体中, 有效改善了高熵陶瓷的相对密度和力学性能。当B4C体积分数为20%时, 复相陶瓷的抗弯强度、断裂韧性以及维氏硬度均达到最高, 分别为(570.0±27.6) MPa、(5.58±0.36) MPa·m1/2和(24.6±1.1) GPa。微观结构分析表明, B4C能够钉扎晶界、细化晶粒, 并能够引入裂纹偏转、分支等增韧机制, 最终实现复相陶瓷的强化及韧化。此外, 利用静态氧化实验, 揭示了B4C含量对复相陶瓷800~1400 ℃抗氧化性能的影响。当B4C体积分数不小于20%时, 其氧化生成的玻璃相B2O3能够均匀包裹(Zr, Hf)O2、TiOx及Ta2O5等高熵基体对应的氧化物, 从而在陶瓷表面形成均匀致密的氧化层, 抑制氧向基体内部扩散, 降低氧化层厚度并提升复相陶瓷的抗氧化性能。本工作能够为高熵硼化物陶瓷的力学及抗氧化性能研究提供实验依据和数据支撑。

关键词: 高熵硼化物陶瓷, B4C, 力学性能, 抗氧化性能

Abstract:

High-entropy boride ceramics (HEBs) consisting of four or more principle metallic elements rapidly develop in recent years due to their outstanding unique physical properties and excellent elevated temperature properties, showing extraordinary promise as potential thermal protection materials applied in extreme environments. However, on the basis of unclear role of each element on their oxidation reaction, HEBs are generally difficult to densify because of their low self-diffusion coefficients and possible sluggish diffusion effect, resulting in limited mechanical properties and low oxidation resistance. In this work, a novel type of HEBs, (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C composites, were prepared by boro/carbothermal reduction method combined with hot-pressing sintering at 1900 ℃. The effect of B4C at the volume fractions ranging from 10% to 30% on the mechanical properties and oxidation resistance of the composites was systematically investigated. Microstructure analyses indicate that homogenously distributed B4C can suppress grain growth of the HEBs matrix and promote toughening mechanisms such as crack deflection and crack branching, consequently resulting in strengthening and toughening composites. When the volume fraction of B4C is 20%, the as-prepared composite shows a high relative density (96.1%) and good mechanical properties with Vickers hardness of (24.6±1.1) GPa, flexural strength of (570.0±27.6) MPa and fracture toughness of (5.58±0.36) MPa·m1/2. In addition, exploration on the oxidation resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C composites at temperatures ranging from 800 ℃ to 1400 ℃ shows that excellent oxidation resistance occurs at the chosen temperatures due to the formation of a dense and continuous oxidation scale, which acts as a barrier layer preventing oxygen inward diffusion. The main compositions of the oxide scale are TiOx, (Zr, Hf)O2 oxides and B2O3 at 800 ℃, while multicomponent oxidation products of (Zr, Hf, Ta)Ox, (Zr, Hf)O2 and TiTaO4 are formed in the oxide scale at 1100 ℃. As the temperature increased to 1400 ℃, thickness of the oxide layer significantly increases due to their volatilization of B2O3, while continuous B2O3 glassy phase plays a crucial role in the oxidation process of HEBs. When the B4C volume fraction not less than 20%, TiTa2O7 and TiO2 which were embedded in B2O3 glass, could effectively insulate inward oxygen and interfacial oxide thickness and enhance oxidation resistance of the composites. In summary, the primary work can be used as a reference to the researches relating to optimizing mechanical properties and oxidation resistance for HEBs.

Key words: high-entropy boride ceramic, B4C, mechanical property, oxidation resistance

中图分类号: