无机材料学报 ›› 2024, Vol. 39 ›› Issue (5): 561-568.DOI: 10.15541/jim20230433

• 研究快报 • 上一篇    

Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究

李红兰1(), 张俊苗1, 宋二红2(), 杨兴林1()   

  1. 1.江苏科技大学 能源与动力学院, 镇江 212003
    2.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
  • 收稿日期:2023-09-21 修回日期:2023-11-22 出版日期:2024-05-20 网络出版日期:2024-01-31
  • 通讯作者: 宋二红, 副研究员 E-mail: ehsong@mail.sic.ac.cn;
    杨兴林, 教授. E-mail: hcyangxl2010@163.com
  • 作者简介:李红兰(1983-), 女, 博士研究生. E-mail: openfoam@just.edu.cn
  • 基金资助:
    上海市自然科学基金面上项目(21ZR1472900);上海市自然科学基金面上项目(22ZR1471600)

Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study

LI Honglan1(), ZHANG Junmiao1, SONG Erhong2(), YANG Xinglin1()   

  1. 1. School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2023-09-21 Revised:2023-11-22 Published:2024-05-20 Online:2024-01-31
  • Contact: SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;
    YANG Xinglin, professor. E-mail: hcyangxl2010@163.com
  • About author:LI Honglan (1983-), female, PhD candidate. E-mail: openfoam@just.edu.cn
  • Supported by:
    Natural Science Foundation of Shanghai(21ZR1472900);Natural Science Foundation of Shanghai(22ZR1471600)

摘要:

工业界普遍采用Haber-Bosch方法在高温(400~600 ℃)和高压(150~300 atm, 1 atm= 0.101325 MPa)条件下催化氮气裂解和加氢而合成氨气(NH3), 这不仅消耗大量能源, 也给环境造成很大污染。为改变这种状况, 探索常温常压条件下合成NH3的全新途径已成为研究热点。电催化还原N2合成NH3是尚待探索的重点方向之一。本研究利用密度泛函理论计算, 探讨了过渡金属元素(如Fe, Nb, Mo, W, Ru)和非金属元素(如B, P, S)共掺杂石墨烯作为该方向催化剂的可行性。结果表明, Mo和S(Mo/S)共掺杂石墨烯在NH3合成中具有极低的电极电势(仅为0.47 V), 其速率控制步骤涉及的中间产物为*NNH。NH3合成电势比析氢反应的电势(0.51 V)低, 说明N2还原制备NH3具有选择性。经从头算的分子动力学计算验证, Mo/S共掺杂石墨烯体系在室温下具有良好的热力学稳定性。电子结构分析进一步揭示, 过渡金属电子转移能力对高效N2电催化还原活性具有关键影响, 可通过调控非金属元素对过渡金属周边配位环境的影响, 优化过渡金属中心的电子结构, 从而提高催化性能。

关键词: 氮气还原反应, 密度泛函理论, 石墨烯, 热力学, 电催化

Abstract:

In the industrial landscape, the well-established Haber-Bosch method is employed for the catalytic synthesis of ammonia (NH3) from hydrogen and nitrogen gases, necessitating elevated temperatures (400-600 ℃) and high pressures (150-300 atm, 1 atm= 0.101325 MPa). In response to the imperative to reduce energy consumption and environment impact imposed by this synthetic process, significant research efforts have converged on realizing NH3 synthesis under ambient conditions. This study delves into the realm of N2 electrocatalytic reduction to NH3, using density functional theory (DFT) calculations to explore the feasibility of employing graphene co-doped with a combination of transition metal elements (e.g., Fe, Nb, Mo, W, and Ru) and non-metal elements (e.g., B, P, and S) as catalyst for ammonia synthesis. The findings underscore that Mo and S co-doped graphene (Mo/S graphene) demonstrates an exceptionally low electrode potential of 0.47 V for NH3 synthesis, with the key rate-controlling step centered around the formation of the intermediate *NNH. Especially, the ammonia synthesis potential is found to be lower than the hydrogen evolution potential (0.51 V), conclusively affirming the selectivity of nitrogen reduction to ammonia. Furthermore, through ab initio molecular dynamics calculations, the study attests to the remarkable thermodynamic stability of the Mo/S co-doped graphene system under room temperature conditions. Notably, electronic structure analysis validates that the ability of electron communication of the transition metal plays a pivotal role in dictating the efficiency of N2 electrocatalytic reduction. It can be tactically optimized through controlled modulation of the influence of the non-metal element on the coordination environment of the transition metal, thus substantially enhancing catalytic performance.

Key words: nitrogen reduction reaction, density functional theory, graphene, thermodynamic, electrocatalysis

中图分类号: