无机材料学报 ›› 2024, Vol. 39 ›› Issue (1): 61-70.DOI: 10.15541/jim20230370

• 研究论文 • 上一篇    下一篇

C/C复合材料高熵氧化物涂层抗烧蚀性能

郭凌翔(), 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳()   

  1. 西北工业大学 超高温结构复合材料国防科技重点实验室, 纤维增强轻质复合材料陕西省重点实验室, 西安 710072
  • 收稿日期:2023-08-14 修回日期:2023-10-18 出版日期:2024-01-20 网络出版日期:2023-10-15
  • 通讯作者: 孙 佳, 副教授. E-mail: j.sun@nwpu.edu.cn
  • 作者简介:郭凌翔(1997-), 男, 博士研究生. E-mail: guolingxiang@mail.nwpu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3708600);国家重点研发计划(2021YFA0715802);国家自然科学基金(52101098);航空科学基金(2022Z055053004)

Ablation Resistance of High-entropy Oxide Coatings on C/C Composites

GUO Lingxiang(), TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia()   

  1. State Key Laboratory of Ultra High Temperature Composite Materials, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China
  • Received:2023-08-14 Revised:2023-10-18 Published:2024-01-20 Online:2023-10-15
  • Contact: SUN Jia, associate professor. E-mail: j.sun@nwpu.edu.cn
  • About author:GUO Lingxiang(1997-), male, PhD candidate. E-mail: guolingxiang@mail.nwpu.edu.cn
  • Supported by:
    National Key R&D Program of China(2022YFB3708600);National Key R&D Program of China(2021YFA0715802);National Natural Science Foundation of China(52101098);Aeronautical Science Foundation of China(2022Z055053004)

摘要:

新一代高超声速飞行器热端部件服役温度不断提高, 对表面防护涂层的相稳定性和抗烧蚀性能提出了更高的要求。本工作针对传统过渡金属氧化物ZrO2、HfO2涂层开展高熵化设计, 采用高温固相反应结合超音速大气等离子喷涂制备(Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ(M1R3O)、(Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ(M2R3O)、(Hf0.25Zr0.25- Sm0.167Er0.167Y0.167)O2-δ(M3R3O)三种高熵氧化物涂层, 探究稀土组元含量对高熵氧化物涂层的相结构演变规律、相稳定性以及抗烧蚀性能的影响。M2R3O涂层和M3R3O涂层呈现优异的相稳定性和抗烧蚀性能, 涂层经热流密度为2.38~2.40 MW/m2的氧-乙炔焰烧蚀后仍保持物相结构稳定, 未发生固溶体分解或析出稀土组元。其中M2R3O涂层循环烧蚀180 s后的质量烧蚀率与线烧蚀率分别为0.01 mg/s和-1.16 μm/s, 相比M1R3O涂层(0.09 mg/s、-1.34 μm/s)以及M3R3O涂层(0.02 mg/s、-4.51 μm/s), 分别降低了88.9%、13.4%以及50.0%、74.3%, 表现出最优异的抗烧蚀性能。M2R3O涂层的抗烧蚀性能优异归因于其兼具较高的熔点(>2200 ℃)和较低的热导率((1.07±0.09) W/(m·K)), 使其有效防护内部的SiC过渡层以及C/C复合材料免受氧化损伤, 避免了界面SiO2相形成所导致的界面开裂。

关键词: 高熵陶瓷, 过渡金属氧化物, 热喷涂, 热防护涂层, 抗烧蚀, C/C复合材料

Abstract:

With improvement in service temperature of thermal structural components for the new generation hypersonic aircraft, higher requirements are put forward for the phase stability and ablation resistance of the thermal protection coatings (TPCs). Carrying out high-entropy design for traditional transition metal oxide ZrO2 and HfO2 coatings, solid-phase reaction and supersonic atmosphere plasma spraying (SAPS) were applied to prepare (Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ (M1R3O), (Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ (M2R3O), (Hf0.25Zr0.25Sm0.167Er0.167Y0.167)O2-δ (M3R3O) high-entropy oxide (HEO) coatings. The effects of rare earth content on phase structure evolution, phase stability and ablative resistance of HEO coatings were investigated. M2R3O coating and M3R3O coating possessed excellent phase stability and ablation resistance, which maintained stable phase structure after ablation by oxygen-acetylene flame with heat flux density of 2.38-2.40 MW/m2, without decomposition of solid solution and precipitation of rare earth components. Mass ablation rate and linear ablation rate of M2R3O coating after cyclic ablation for 180 s are 0.01 mg/s and -1.16 μm/s, respectively. Compared with M1R3O coating (0.09 mg/s, -1.34 μm/s) and M3R3O coating (0.02 mg/s, -4.51 μm/s), the reductions of ablation rate are 88.9%, 13.4%, respectively, and 50.0%, 74.3% for M2R3O coatings, respectively, presenting the best ablation resistance. M2R3O coating exhibits excellent ablation resistance due to its high melting point (>2200 ℃) and low thermal conductivity ((1.07±0.09) W/(m·K)), which effectively protects the internal SiC transition layer and C/C composites from oxidation damage, avoiding interface cracking caused by the formation of SiO2 phase.

Key words: high-entropy ceramic, transition metal oxide, thermal spray, thermal protection coating, ablation resistance, C/C composite

中图分类号: