无机材料学报 ›› 2024, Vol. 39 ›› Issue (1): 99-106.DOI: 10.15541/jim20230278

• 研究快报 • 上一篇    下一篇

浓度梯度掺杂实现BiFeO3薄膜自极化

戴乐1(), 刘洋1, 高轩1, 王书豪1, 宋雅婷1, 唐明猛1, 刘丽莎1(), 汪尧进1()   

  1. 1.南京理工大学 材料科学与工程学院, 南京 210094
    2.罗斯国家科学院 材料科学与应用研究中心, 明斯克 220072, 白俄罗斯
  • 收稿日期:2023-06-12 修回日期:2023-08-07 出版日期:2024-01-20 网络出版日期:2023-10-07
  • 通讯作者: 汪尧进, 教授. E-mail: yjwang@njust.edu.cn;
    刘丽莎, 教授. E-mail: lishaliu@njust.edu.cn
  • 作者简介:戴 乐(1998-), 女, 硕士研究生. E-mail: DL_2323@163.com

Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films

DAI Le1(), LIU Yang1, GAO Xuan1, WANG Shuhao1, SONG Yating1, TANG Mingmeng1, DMITRY V Karpinsky2, LIU Lisha1(), WANG Yaojin1()   

  1. 1. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2. entific and Practical Centre for Materials Research, National Academy of Sciences of Belarus, Minsk 220072, Belarus
  • Received:2023-06-12 Revised:2023-08-07 Published:2024-01-20 Online:2023-10-07
  • Contact: WANG Yaojin, professor. E-mail: yjwang@njust.edu.cn;
    LIU Lisha, professor. E-mail: lishaliu@njust.edu.cn
  • About author:DAI Le (1998-), female, Master candidate. E-mail: DL_2323@163.com
  • Supported by:
    National Natural Science Foundation of China(52102133);Natural Science Foundation of Jiangsu Province, China(BK20210354);Fundamental Research Funds for the Central Universities(30921011217);Young Elite Scientists Sponsorship Program by CAST(2021-2023QNRC001)

摘要:

BiFeO3是一种非常有前途的无铅铁电材料, 与大多数传统铁电材料相比, 它具有更大的极化和更高的居里温度, 为高温应用提供了可能。受到衬底强烈的夹持效应、较大的矫顽场和漏电流的影响, BiFeO3薄膜难以被极化。自极化是解决这一问题的可行方法。本研究采用溶胶-凝胶法在Pt(111)/Ti/SiO2/Si衬底上生长了BiFeO3薄膜, 向上梯度薄膜(从衬底BiFeO3过渡到薄膜表面Bi0.80Ca0.20FeO2.90)以及向下梯度薄膜(从衬底Bi0.80Ca0.20FeO2.90过渡到薄膜表面BiFeO3)。通过细致地调控薄膜内部缺陷的定向分布形成内置电场,从而导致薄膜具有自极化特性。压电力显微镜结果表明:在BiFeO3薄膜中, Ca的梯度方向可以调控自极化的方向。此外, 类似二极管的单向导通特性验证了薄膜的自极化是由Ca的浓度梯度掺杂导致。X射线光电子能谱结果表明, 氧空位的梯度分布导致的内置电场可能是造成自极化现象的原因。本研究为实现铁电薄膜的自极化提供了一种新的策略, 并在以自极化的内置电场为驱动, 提高光伏或光敏器件性能方面具有潜在的应用前景。

关键词: 自极化, 梯度掺杂, 铁酸铋薄膜, 溶胶-凝胶法

Abstract:

BiFeO3 is a highly promising lead-free ferroelectric material, surpassing most conventional ferroelectric materials in terms of the polarization and Curie temperature, offering a pathway for potential applications at elevated temperatures. Nevertheless, challenges arise due to strong clamping effect of substrate, large coercive fields, and high leakage currents, causing BiFeO3 films difficult to be polarized. The implementation of self-polarization presents a viable solution. Herein, we prepared BiFeO3, up-graded films (which transition from BiFeO3 to Bi0.80Ca0.20FeO2.90 from the substrate to the film surface), and down-graded films (which transition from Bi0.80Ca0.20FeO2.90 to BiFeO3 from the substrate to the film surface) using the Sol-Gel method on Pt(111)/Ti/SiO2/Si substrates. After directional distribution of defects within the film being carefully modulated, the BiFeO3 films are self-polarization when induced by build-in electric field. Piezoresponse force microscopy show that the up-graded and down-graded self-polarization behavior can be modulated by gradient direction of Ca in BiFeO3 thin films. Moreover, diode-like current-voltage signature verifies the composition gradient-induced self-polarization. The X-ray photoelectron spectroscopy results indicate that the polarization orientation mechanism may arise from the internal electric field attributed to the gradient distribution of oxygen vacancy. This work provides a new strategy to achieve self-polarization in ferroelectric thin films, as well potential novel application in improving the performance of photovoltaic or photosensitive devices as assisted by internal field via self-aligned ferroelectric polarization.

Key words: self-polarization, gradient doping, bismuth ferrite film, Sol-Gel method

中图分类号: