无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1466-1474.DOI: 10.15541/jim20230215

所属专题: 【能源环境】锂离子电池(202312)

• 研究快报 • 上一篇    下一篇

正极包覆与界面修饰: 双策略改善聚氧化乙烯固态电解质对高电压正极稳定性

谭淑雨(), 刘晓宁, 毕志杰, 万勇(), 郭向欣()   

  1. 青岛大学 物理科学学院, 青岛 266071
  • 收稿日期:2023-05-05 修回日期:2023-06-25 出版日期:2023-07-28 网络出版日期:2023-07-28
  • 通讯作者: 万 勇, 教授. E-mail: wanyongqd@hotmail.com;
    郭向欣, 教授. E-mail: xxguo@qdu.edu.cn
  • 作者简介:谭淑雨(1998-), 女, 硕士研究生. E-mail: tsy1576362772@163.com

Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes

TAN Shuyu(), LIU Xiaoning, BI Zhijie, WAN Yong(), GUO Xiangxin()   

  1. College of Physics, Qingdao University, Qingdao 266071, China
  • Received:2023-05-05 Revised:2023-06-25 Published:2023-07-28 Online:2023-07-28
  • Contact: WAN Yong, professor. E-mail: wanyongqd@hotmail.com;
    GUO Xiangxin, professor. E-mail: xxguo@qdu.edu.cn
  • About author:TAN Shuyu (1998-), female, Master candidate. E-mail: tsy1576362772@163.com
  • Supported by:
    National Natural Science Foundation of China(22005163);National Natural Science Foundation of China(U1932205);Natural Science Foundation of Shandong Province(ZR2020MA084);Key R&D Program of Shandong Province(2021CXGC010401);Taishan Scholars Program(ts201712035)

摘要:

聚氧化乙烯(PEO)基固体电解质具有成本低、对锂稳定、易于大规模生产等优点, 是固态锂电池最有前途的固体电解质。然而, PEO对高压正极不稳定, 严重限制了其在高能量密度领域的应用。本研究在LiNi0.6Co0.2Mn0.2O2 (NCM)正极颗粒上部分包覆环化聚丙烯腈(cPAN)纳米层作为电子导电层, 在NCM/PEO界面上引入离子液体作为离子导电通道, 用以提高PEO与高压NCM正极的相容性。其中, cPAN层不仅在物理上隔离了PEO电解质与NCM正极的直接接触, 而且cPAN中具有非局域的sp2 π键, 有助于正极内部的电子传输。同时, 高离子电导率的离子液体的流动性较高, 可以充分润湿正极侧界面, 并在循环过程中分解为富LiF和Li3N的CEI层, 进一步限制PEO电解质的氧化分解。基于上述复合策略的固态NCM/Li电池可在0.1C (1C=0.18 A·g-1), 4.30 V截止电压下稳定循环100次, 且容量保持率可达85.3%。本研究通过表面包覆和界面修饰, 为提高PEO基电解质对高压正极的稳定性提供了可行方案。

关键词: 聚氧化乙烯, 环化, 高电压正极, 界面工程, 固态锂电池

Abstract:

Poly(ethylene oxide) (PEO)-based solid electrolytes are deemed as the most promising alternatives for solid-state lithium batteries on account of their low cost, good stability against Li metal, and easy large-scale production. However, the instability of PEO against high-voltage cathodes severely limits its application in the fields needing high energy density. In this work, a discontinuous cyclized polyacrylonitrile (cPAN) nanolayer, served as an electron-conducting shell, is partially coated on LiNi0.6Co0.2Mn0.2O2 (NCM) cathode particles, while an ionic liquid acted as ion-conducting pathway is introduced at NCM/PEO interface, enabling the high compatibility of PEO against high-voltage NCM cathode. The cPAN layer not only physically isolates the direct contact of PEO electrolyte from NCM cathode, but also contributes to the electronic transfer inside the cathode due to the formation of delocalized sp2 π bond during coating process. Meanwhile, the mobile ionic liquid with good ionic conductivity fully wets cathodic interface, followed by decomposition into cathode-electrolyte interphase (CEI) of LiF and Li3N, further restricting the oxidation-failure of PEO electrolyte. By taking the combined strategy, the corresponding solid-state NCM/Li battery delivers an excellent electrochemical performance with a capacity retention of 85.3% after 100 cycles at rate of 0.1C (1C=0.18 A·g-1) under a cutoff voltage of 4.30 V. This work opens up a new direction to address the interfacial stability issues of PEO-based electrolyte against high-voltage cathodes through surface coating and interface modification.

Key words: poly(ethylene oxide), cyclization, high-voltage cathode, interface engineering, solid-state lithium battery

中图分类号: