[1] |
YANG H P, ZHOU X F, FANG H J, et al. Study on field-induced strain properties of sodium bismuth titanate based lead-free ferroelectric ceramics. Journal of Inorganic Materials, 2022, 37(6): 603.
DOI
URL
|
[2] |
WEI Z Q, XIA X, LI Q, et al. Preparation and properties of barium titanate/calcium silicate composite bioactive piezoelectric ceramics. Journal of Inorganic Materials, 2022, 37(6): 617.
DOI
|
[3] |
NAN B, ZANG J D, Lu W L, et al. Research progress in manufacturing piezoelectric ceramics with additives. Journal of Inorganic Materials, 2022, 37(6): 585.
DOI
|
[4] |
BARDONG J, BRUCKNER G, KRAFT M, et al. Influence of Packaging Atmospheres on the Durability of High-temperature SAW Sensors. IEEE International Ultrasonics Symposium, Rome, Italy, 2009: 1680.
|
[5] |
TIAN S, Li L, Lu X, et al. Electrical conduction mechanism of rare-earth calcium oxyborate high temperature piezoelectric crystals. Acta Materialia, 2020, 183: 165.
DOI
URL
|
[6] |
LUCAS K, BOUCGY S, BELANGER P, et al. High-temperature electrical conductivity in piezoelectric lithium niobate. Journal of Applied Physics, 2022, 131(19): 194102.
DOI
URL
|
[7] |
OGI H, NAKAMURA N, SATO K, et al. Elastic, anelastic, and piezoelectric coefficients of langasite: resonance ultrasound spectroscopy with laser-Doppler interferometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(5): 553.
DOI
URL
|
[8] |
VIJAY S. Defect Chemistry and DFT Modelling of La3Ta0.5Ga5. 5O14. Oslo, Norway: University of Oslo Department of Chemistry, 2013.
|
[9] |
ZHANG S J, KONG H K, XIA R, et al. Growth and high- temperature electromechanical properties of Ca3NbX3Si2O14 (X= Ga and Al) piezoelectric crystals. Solid State Communications, 2010, 150(9/10): 435.
DOI
URL
|
[10] |
SHI X Z, YUAN D R, YIN X, et al. Crystal growth and dielectric, piezoelectric and elastic properties of Ca3TaGa3Si2O14 single crystal. Solid State Communications, 2007, 142(3): 173.
DOI
URL
|
[11] |
SEH H, TULLER H L, FRITZE H. Langasite for high-temperature acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2003, 93(1/2/3): 169.
DOI
URL
|
[12] |
FRITZE H, SEH H, TULLER H L, et al. Operation limits of langasite high temperature nanobalances. Journal of the European Ceramic Society, 2001, 21(10/11): 1473.
DOI
URL
|
[13] |
XIONG K N, ZHENG Y Q, TU X N, et al. Growth and high temperature properties of Ca3Ta(Al0. 9Ga0.1)3Si2O14 crystals with ordered langasite structure. Journal of Crystal Growth, 2014, 401: 820.
DOI
URL
|
[14] |
TANG L G, ZHUANG M H, LI H. Application of ultrasonic resonance spectroscopy in characterization of piezoelectric materials. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(6): 44.
|
[15] |
TAKEDA H, TANAKA S, LZUKAWA S, et al. Effective substitution of aluminum for gallium in langasite-type crystals for a pressure sensor use at high temperature. IEEE International Ultrasonics Symposium. Rotterdam, 2005: 560.
|
[16] |
BJORHEIM T S, SHANMUGAPPIRABU V, HAUGSRUD R, et al. Protons in piezoelectric langatate: La3Ga5.5Ta0.5O14. Solid State Ionics, 2015, 278: 275.
DOI
URL
|
[17] |
ANFIMOV I M, BUZANOV O A, KOZLOVA A P, et al. Impedance spectroscopy study of lanthanum-gallium tantalate single crystals grown under different conditions. Modern Electronic Materials, 2019, 5(2): 41.
DOI
URL
|
[18] |
MALINKOVICH M D, PARKHOMENKO Y N, SKRYLEVA E A, et al. XPS study of gallium loss from langasite crystal surface under vacuum annealing. Sensors and Actuators A: Physical, 2012, 180: 63.
DOI
URL
|
[19] |
JOSEPH M, TABATA H, SAEKI H, et al. Fabrication of the low- resistive p-type ZnO by codoping method. Physica B: Condensed Matter, 2001, 302: 140.
|