无机材料学报 ›› 2023, Vol. 38 ›› Issue (11): 1292-1300.DOI: 10.15541/jim20230178
所属专题: 【能源环境】光催化(202312)
王梦桃1(), 索军1, 方东1(), 易健宏1, 刘意春1, Olim RUZIMURADOV2
收稿日期:
2023-04-11
修回日期:
2023-06-15
出版日期:
2023-06-25
网络出版日期:
2023-06-28
通讯作者:
方 东, 教授. E-mail: fangdong@kust.edu.cn作者简介:
王梦桃(1998-), 女, 硕士研究生. E-mail: m19988568478@163.com
基金资助:
WANG Mengtao1(), SUO Jun1, FANG Dong1(), YI Jianhong1, LIU Yichun1, Olim RUZIMURADOV2
Received:
2023-04-11
Revised:
2023-06-15
Published:
2023-06-25
Online:
2023-06-28
Contact:
FANG Dong, professor. E-mail: fangdong@kust.edu.cnAbout author:
WANG Mengtao (1998-), female, Master candidate. E-mail: m19988568478@163.com
Supported by:
摘要:
光催化以其反应条件温和、能直接利用太阳能转化为化学能的优势, 而备受科研人员的关注。如何拓展光谱吸收范围及阻止光生“电子-空穴”复合, 是目前光催化研究领域的热点。本工作通过阳极氧化制备出非晶TiO2纳米管(TiO2NTs), 利用机械液压法将熔融铟锡合金压入非晶TiO2中, 得到In9.45Sn1/TiO2NTs, 再经高温煅烧后得到ITO/TiO2NTs复合材料。实验对比了TiO2NTs、In9.45Sn1/TiO2NTs与ITO/TiO2NTs对去除水溶液中亚甲基蓝的光催化性能, 在180 min光照下, ITO/TiO2NTs的降解效果最佳, 降解效率达96.14%。利用紫外-可见漫反射光谱(UV-Vis DRS)研究了TiO2NTs、In9.45Sn1/TiO2NTs和ITO/TiO2NTs的光吸附性能, ITO/TiO2NTs的吸光度最强。结合瞬态光电流响应、光电流密度电势、电化学阻抗谱和Mott-Schottky测试结果可知, ITO/TiO2NTs比TiO2NTs具有更高的电荷转移能力和供体密度, 抑制了空穴和电子的复合, 从而增强光电化学性能。经过五次循环后, ITO/TiO2NTs的降解效率保持在90.28%。自由基捕获实验结果表明, •O2-和•OH是光催化降解的主要活性物质。
中图分类号:
王梦桃, 索军, 方东, 易健宏, 刘意春, Olim RUZIMURADOV. ITO/TiO2纳米管阵列复合材料的可见光催化性能[J]. 无机材料学报, 2023, 38(11): 1292-1300.
WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite[J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300.
图2 直接制备的TiO2NTs(非晶TiO2NTs)、450 ℃煅烧得到的TiO2NTs(TiO2NTs)、In9.45Sn1/TiO2NTs和ITO/TiO2NTs的XRD图谱
Fig. 2 XRD patterns of the as-prepared TiO2NTs (amorphous TiO2NTs), TiO2NTs after calcined at 450 ℃ (TiO2NTs), In9.45Sn1/TiO2NTs and ITO/TiO2NTs
图4 (a~c)TiO2NTs、In9.45Sn1/TiO2NTs和ITO/TiO2NTs的SEM照片, (d, e)In9.45Sn1/TiO2NTs和ITO/TiO2NTs的TEM照片, (f)是(e)中红色虚线框区域的放大图, (f1)和(f2)是(f)中区域1和2相对应的快速傅里叶变换图像和样品相对应晶面间距
Fig. 4 (a-c) SEM images of TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (d, e) TEM images of In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (f) HRTEM image recorded at the red dotted box region in (e); (f1, f2) Fast Fourier Transform images and interplanar spacing images of sample in the regions 1 and 2 of (f), respectively
图6 (a) TiO2NTs、In9.45Sn1/TiO2NTs和ITO/TiO2NTs对MB的光催化降解性能, (b)降解MB的伪一级动力学拟合, (c)循环光降解MB的ITO/TiO2NTS光催化剂的光稳定性测试
Fig. 6 (a) Photocatalytic degradation of MB by TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (b) Pseudo-first-order kinetic plots of MB photodegradation; (c) Photostability tests over ITO/TiO2NTs photocatalyst for the cycling photodegradation of MB
图7 TiO2NTs、In9.45Sn1/TiO2NTs和ITO/TiO2NTs的(a)瞬时光电流密度-时间曲线(i-t), (b)光电流密度-电位曲线(J-V)(扫描速率: 10 mV/s)、(c)电化学交流阻抗谱(EIS)和(d)莫特-肖特基(M-S)曲线
Fig. 7 (a) Instantaneous current density-time curves (i-t); (b) Photocurrent density-potential curves (J-V) (scanning rate: 10 mV/s); (c) Electrochemical impedance spectra (EIS); (d) Mott-Schottky curves (M-S) of TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2 NTs All electrolytes used in the above tests are 0.2 mol/L Na2SO4 aqueous solution with pH 7
图8 在可见光照射下, 用EDTA-2Na、异丙醇和氮氧自由基哌啶醇作为捕获剂进行光催化反应期间活性物种的捕获实验
Fig. 8 Tests of active species trapping during the photocatalytic reaction with sacrificial reagents of EDTA-2Na, IPA and 4-Hydroxy-TEMPO under visible optical irradiation
[1] |
CHEN J, ZENG T, CHANG S, et al. Discharged titanium oxide nanotube arrays coated with Ni as a high-performance lithium battery electrode material. Energy Technology, 2022, 10(11): 2200494.
DOI URL |
[2] |
SU C, HONG B Y, TSENG C M. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3): 119.
DOI URL |
[3] |
BURASO W, LACHOM V, SIRIYA P, et al. Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Materials Research Express, 2018, 5(11): 115003.
DOI URL |
[4] |
REHAN M, LAI X, KALE G.M. Hydrothermal synthesis of titanium dioxide nanoparticles studied employing in situ energy dispersive X-ray diffraction. CrystEngComm, 2011, 13(11): 3725.
DOI URL |
[5] |
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Hydrothermal/ solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: preparation, characterization, properties, and performance. Chemosphere, 2019, 219: 804.
DOI URL |
[6] |
SUN H, WANG C, PANG S, et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. Journal of Non-Crystalline Solids, 2008, 354(12/13): 1440.
DOI URL |
[7] |
NASSAR Z M, YÜKSELICI M H. The effect of strain and grain size on phonon and electron confinements in TiO2 thin films. Physica Status Solidi (b), 2018, 255(6): 1700636.
DOI URL |
[8] |
CHIGANE M, SHINAGAWA T, TANI J I. Preparation of titanium dioxide thin films by indirect-electrodeposition. Thin Solid Films, 2017, 628: 203.
DOI URL |
[9] | VIJAYALAKSHMI R, RAJENDRAN V. Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science Research, 2012, 4(2): 1183. |
[10] |
HASHIMOTO K, IRIE H, FUJISHIMA A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, 44(12R): 8269.
DOI |
[11] |
YOSHIDA T, MISU Y, YAMAMOTO M, et al. Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catalysis Today, 2020, 352: 34.
DOI URL |
[12] |
XIA J, DONG L, SONG H, et al. Preparation of doped TiO2 nanomaterials and their applications in photocatalysis. Bulletin of Materials Science, 2023, 46(1): 13.
DOI |
[13] |
AYDIN E B, SEZGINTÜRK M K. Indium tin oxide (ITO): a promising material in biosensing technology. TrAC Trends in Analytical Chemistry, 2017, 97: 309.
DOI URL |
[14] |
BANERJEE S, MANDAL S, BARUA A K, et al. Hierarchical indium tin oxide (ITO) nano-whiskers: electron beam deposition and sub-bandgap defect levels mediated visible light driven enhanced photocatalytic activity. Catalysis Communications, 2016, 87: 86.
DOI URL |
[15] |
WEI N, CUI H, WANG X, et al. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: enhanced photocatalytic and gas-sensing properties. Journal of Colloid and Interface Science, 2017, 498: 263.
DOI URL |
[16] |
KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. Journal of the American Chemical Society, 2009, 131(49): 17736.
DOI PMID |
[17] |
NAIK G.V, KIM J, BOLTASSEVA A. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Materials Express, 2011, 1(6): 1090.
DOI URL |
[18] |
LI S, LIANG J, WEI P, et al. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience, 2022, 2(4): 382.
DOI URL |
[19] |
DUNG T N, DANG TRAN C, TRINH DUC T, et al. Fabrication and characteristics of Zn1-xSnxO nanorod/ITO composite photocatalytic films. Materials Research Express, 2020, 7(4): 045504.
DOI |
[20] |
SIVASAKTHI P, SANGARANARAYANAN M V, GURUMALLESH PRABU H. Micro-nanoarchitectures of electrodeposited Ni-ITO nanocomposites on copper foil as electrocatalysts for the oxygen evolution reaction. New Journal of Chemistry, 2021, 45(11): 5146.
DOI URL |
[21] |
CHEN A, BAI S, SHI B, et al. Methane gas-sensing and catalytic oxidation activity of SnO2-In2O3 nanocomposites incorporating TiO2. Sensors and Actuators B: Chemical, 2008, 135(1): 7.
DOI URL |
[22] |
WENDERICH K, MUL G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chemical Reviews, 2016, 116(23): 14587.
PMID |
[23] |
CHEN L, SONG X L, REN J T, et al. Precisely modifying Co2P/ black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 315: 121546.
DOI URL |
[24] |
JIANG W, QU D, AN L, et al. Deliberate construction of direct Z-scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 2019, 7(31): 18348.
DOI URL |
[25] |
SUO J, JIAO K, FANG D, et al. Visible photocatalytic properties of Ag-Ag2O/ITO NWs fabricated by mechanical injection-discharge- oxidation method. Vacuum, 2022, 204: 111338.
DOI URL |
[26] |
WANG Z, LUO C, ZHANG Y, et al. Construction of hierarchical TiO2 nanorod array/graphene/ZnO nanocomposites for high-performance photocatalysis. Journal of Materials Science, 2018, 53(22): 15376.
DOI |
[27] |
EL JOUAD Z, LOUARN G, PRAVEEN T, et al. Improved electron collection in fullerene via caesium iodide or carbonate by means of annealing in inverted organic solar cells. EPJ Photovoltaics, 2014, 5: 50401.
DOI URL |
[28] | DANG M.T, LEFEBVRE J, WUEST J.D. Recycling indium tin oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3373. |
[29] |
PAN Q, LI A, ZHANG Y, et al. Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoe lectrochemical performance. Advanced Science, 2020, 7(3): 1902235.
DOI URL |
[30] |
WANG Z, KONG D, WANG M, et al. Sealing effect of surface porosity of Ti-P composite films on tinplates. RSC Advances, 2019, 9(23): 12990.
DOI |
[31] |
BAUER F J, BRAEUER P A B, AßMANN S, et al. Characterisation of the transition type in optical band gap analysis of in- flame soot. Combustion and Flame, 2022, 243: 111986.
DOI URL |
[32] |
NIMSHI R E, VIJAYA J J, KENNEDY L J, et al. Effective microwave assisted synthesis of CoFe2O4@TiO2@rGO ternary nanocomposites for the synergic sonophotocatalytic degradation of tetracycline and c antibiotics. Ceramics International, 2023, 49(9): 13762.
DOI URL |
[33] |
SOLTANI T, TAYYEBI A, LEE B K. Enhanced photoelectrochemical (PEC) and photocatalytic properties of visible-light reduced graphene-oxide/bismuth vanadate. Applied Surface Science, 2018, 448: 465.
DOI URL |
[34] | GU S, LI W, WANG F, et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Applied Catalysis B: Environmental, 2015, 170: 186. |
[35] |
CHEN F, YANG Q, YAO F, et al. Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: reaction kinetics and intrinsic mechanism. Chemical Engineering Journal, 2019, 355: 624.
DOI URL |
[36] |
GHANNADI S, ABDIZADEH H, RAKHSHA A, et al. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell. Materials Chemistry and Physics, 2021, 258: 123893.
DOI URL |
[37] |
CHINARRO E, MORENO B, JURADO J R. Combustion synthesis and EIS characterization of TiO2-SnO2 system. Journal of the European Ceramic Society, 2007, 27(13): 3601.
DOI URL |
[38] |
CHONG L W, CHIEN H T, LEE Y L. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources, 2010, 195(15): 5109.
DOI URL |
[39] |
YANG Y, LIAO S, SHI W, et al. Nitrogen-doped TiO2 (B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Advances, 2017, 7(18): 10885.
DOI URL |
[40] |
ZHOU T, WANG J, ZHANG Y, et al. Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineering Journal, 2022, 431: 133414.
DOI URL |
[41] | WEI R B, KUANG P Y, CHENG H, et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4249. |
[42] |
LUO X L, CHEN Z Y, YANG S Y, et al. Two-step hydrothermal synthesis of peanut-shaped molybdenum diselenide/bismuth vanadate (MoSe2/BiVO4) with enhanced visible-light photocatalytic activity for the degradation of glyphosate. Journal of Colloid and Interface Science, 2018, 532: 456.
DOI URL |
[43] | BI Y, YANG Y, SHI X L, et al. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4. Journal of Materials Science & Technology, 2021, 83: 102. |
[44] |
ZHANG X, CHEN C, JIANG C, et al. Construction and mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme heterojunction with enhanced photocatalytic activity. Catalysis Letters, 2021, 151(3): 734.
DOI |
[45] |
BAO Y, CHEN K. Novel Z-scheme BiOBr/reduced graphene oxide/ protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Applied Surface Science, 2018, 437: 51.
DOI URL |
[46] |
GUO F, CHEN J, ZHAO J, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole. Chemical Engineering Journal, 2020, 386: 124014.
DOI URL |
[47] |
OHNO T, SARUKAWA K, MATSUMURA M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002, 26(9): 1167.
DOI URL |
[1] | 薛虹云, 王聪宇, MAHMOOD Asad, 于佳君, 王焱, 谢晓峰, 孙静. 二维g-C3N4与Ag-TiO2复合光催化剂降解气态乙醛抗失活研究[J]. 无机材料学报, 2022, 37(8): 865-872. |
[2] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[3] | 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. |
[4] | 潘碧宸,任鹏禾,周特军,蔡圳阳,赵小军,周宏明,肖来荣. 树脂基复合材料表面隔热涂层的组织与性能研究[J]. 无机材料学报, 2020, 35(8): 947-952. |
[5] | 朱本必,张旺,张志坚,章建忠,IMRAN Zada,张荻. 光热增强光催化性能二氧化钛(B)/玻纤布复合研究[J]. 无机材料学报, 2019, 34(9): 961-966. |
[6] | 张晓锋,张冠华,孟跃,薛继龙,夏盛杰,倪哲明. 席夫碱钴改性CoCr-LDHs材料光催化降解亚甲基蓝研究[J]. 无机材料学报, 2019, 34(9): 974-982. |
[7] | 张亚萍, 丁文明, 朱海丰, 黄承兴, 于濂清, 王永强, 李哲, 徐飞. 电还原MoSe2修饰TiO2纳米管光电化学性能研究[J]. 无机材料学报, 2019, 34(8): 797-802. |
[8] | 李远洋,江波. 具有超亲水光催化性能的λ/4-λ/2型两层宽频增透膜的制备和性能研究[J]. 无机材料学报, 2019, 34(2): 159-163. |
[9] | 隋丽丽,王润,赵丹,申书昌,孙立,徐英明,程晓丽,霍丽华. 多级结构α-MoO3空心微球的构筑及其对有机染料的吸附性能[J]. 无机材料学报, 2019, 34(2): 193-200. |
[10] | 苏琨, 张亚茹, 陆飞, 张君, 王熙. 铂修饰二氧化钛纳米片的制备及其光电催化析氢反应研究[J]. 无机材料学报, 2019, 34(11): 1200-1204. |
[11] | 盛鹏, 赵广耀, 徐丽, 刘双宇, 王博, 刘海镇, 马光, 韩钰, 陈新. 铝沉积还原制备蓝色二氧化钛[J]. 无机材料学报, 2018, 33(9): 942-948. |
[12] | 范闻, 武利民. 硅油两步脱水法可控制备纳米二氧化钛透镜[J]. 无机材料学报, 2018, 33(12): 1337-1342. |
[13] | 赵海兵, 徐海峰, 杨克伟, 林辰学, 冯苗, 于岩. Mg掺杂TiO2纳米晶光氧化还原染料的可逆颜色转变研究[J]. 无机材料学报, 2018, 33(10): 1124-1130. |
[14] | 林景诚, 唐 笑, 楚婉怡. 液相合成超小TiO2纳米簇及其光催化性质[J]. 无机材料学报, 2017, 32(8): 863-869. |
[15] | 鲍 艳, 康巧玲. 中空TiO2微球的制备及其对聚丙烯酸酯薄膜保温性能的影响[J]. 无机材料学报, 2017, 32(6): 581-586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||