无机材料学报 ›› 2023, Vol. 38 ›› Issue (11): 1338-1344.DOI: 10.15541/jim20230197
江润璐1(), 吴鑫1, 郭昊骋1, 郑琦1(), 王连军1(), 江莞1,2
收稿日期:
2023-04-18
修回日期:
2023-05-23
出版日期:
2023-06-16
网络出版日期:
2023-06-16
通讯作者:
王连军, 教授. E-mail: wanglj@dhu.edu.cn;作者简介:
江润璐(1998-), 女, 硕士研究生. E-mail: jrl15316882687@163.com
基金资助:
JIANG Runlu1(), WU Xin1, GUO Haocheng1, ZHENG Qi1(), WANG Lianjun1(), JIANG Wan1,2
Received:
2023-04-18
Revised:
2023-05-23
Published:
2023-06-16
Online:
2023-06-16
Contact:
WANG Lianjun, professor. E-mail: wanglj@dhu.edu.cn;About author:
About author: JIANG Runlu (1998-), female, Master candidate. E-mail: jrl15316882687@163.com
Supported by:
摘要:
热电材料能够实现热能与电能之间直接转换, 在绿色制冷、废热回收等领域具有广阔的应用前景。目前, 对热电材料的研究主要集中在无机半导体材料和导电高分子材料上, 虽然取得了很大进展, 但探索其它新型热电材料仍具有重要意义。金属-有机框架(Metal-Organic frameworks, MOFs)是一种由有机配体和金属离子或团簇通过配位键形成的晶态多孔材料, 具有独特的多孔结构以及组分结构可调等优势, 在一定程度上可以满足“电子晶体-声子玻璃”的要求。本研究采用导电客体分子促进电荷传输的策略, 将导电高分子聚3,4-乙烯二氧噻吩(PEDOT)原位聚合到锆基MOFs材料UiO-67中, 利用MOFs的有序孔道对PEDOT分子链的限域作用, 提升复合材料的电子传导能力。制备得到的PEDOT/UiO-67的电学性能研究表明, 该复合材料室温电导率最高可达5.96×10−3 S·cm−1, 比PEDOT高出1个数量级。同时, 该材料具有热电性能响应, 室温功率因子(Power Factor, PF)最高可达3.67×10−2 nW·m−1·K−2。本工作以MOF的有序孔道为反应平台, 通过简单的原位聚合合成方法构建了导电聚合物/ MOFs导电材料, 为进一步开发MOFs基热电材料提供了参考。
中图分类号:
江润璐, 吴鑫, 郭昊骋, 郑琦, 王连军, 江莞. UiO-67基导电复合材料的制备及其热电性能研究[J]. 无机材料学报, 2023, 38(11): 1338-1344.
JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance[J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344.
图4 (a, b)PEDOT/UiO-67(63 μL), (c, d)PEDOT/UiO-67(94.5 μL), (e, f)PEDOT/UiO-67(126 μL)和(g, h)UiO-67的SEM照片
Fig. 4 SEM images of (a, b) PEDOT/UiO-67(63 μL), (c, d) PEDOT/UiO-67(94.5 μL), (e, f) PEDOT/UiO-67(126 μL) and (g, h) UiO-67
图5 PEDOT/UiO-67(126 μL)的(a, b)SEM照片和(c~f)C, O, S, Zr EDS元素分布映射图
Fig. 5 (a, b) SEM images, and (c-f) C, O, S, Zr EDS elemental mappings of PEDOT/UiO-67(126 μL)
图7 PEDOT/UiO-67和PEDOT的热电性能
Fig. 7 Thermoelectric properties of PEDOT and PEDOT/UiO-67 with various PEDOT contents (a) Electrical conductivity and Seebeck coefficient; (b) Power factor. Colorful figures are available on website
MOF composite | Conductivity/ (S·cm-1) | Method | Ref. |
---|---|---|---|
MIL-101-PEDOT | 1.1×10-3 | EISa | [ |
La(BTC)-PEDOT | 2.3×10-8 | EISa | [ |
UiO-66-PEDOT | ~1×10-3 | 4-Probe | [ |
MIL-101-PANI | 10-6 | - | [ |
NU-1000-polythiophene | 1.3×10-7 | EIS | [ |
UiO-66-PPy | ~2×10-2 | 4-Probe | [ |
Cd2(NDC)(PCA)2-PPy | 0.2 | Hall bar | [ |
Cd2(NDC)(PCA)2-PPy | 1×10-3 | 4-Probe | [ |
PEDOT/UiO-67 | 3.0×10-3 | 4-Probe | This work |
表1 文献报道的MOFs-导电聚合物基复合材料室温电导率
Table 1 Electrical conductivities of reported MOFs-conductive polymer pellets with PEDOT/ UiO-67
MOF composite | Conductivity/ (S·cm-1) | Method | Ref. |
---|---|---|---|
MIL-101-PEDOT | 1.1×10-3 | EISa | [ |
La(BTC)-PEDOT | 2.3×10-8 | EISa | [ |
UiO-66-PEDOT | ~1×10-3 | 4-Probe | [ |
MIL-101-PANI | 10-6 | - | [ |
NU-1000-polythiophene | 1.3×10-7 | EIS | [ |
UiO-66-PPy | ~2×10-2 | 4-Probe | [ |
Cd2(NDC)(PCA)2-PPy | 0.2 | Hall bar | [ |
Cd2(NDC)(PCA)2-PPy | 1×10-3 | 4-Probe | [ |
PEDOT/UiO-67 | 3.0×10-3 | 4-Probe | This work |
图8 PEDOT /UiO-67和PEDOT在不同温度下的热电性能
Fig.8 Temperature-dependent thermoelectric properties of PEDOT and PEDOT /UiO-67 (a) Seebeck coefficient; (b) Electrical conductivity; (c) Power factor
[1] |
TRITT T M, SUBRAMANIAN M A. Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS Bulletin, 2006, 31(3): 188.
DOI URL |
[2] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105.
DOI PMID |
[3] |
SINGH S, LEE S, KANG H, et al. Thermoelectric power waves from stored chemical energy. Energy Storage Materials, 2016, 3: 55.
DOI URL |
[4] |
TU S, TIAN T, OECHSLE A L, et al. Improvement of the thermoelectric properties of PEDOT:PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view. Chemical Engineering Journal, 2022, 429: 132295.
DOI URL |
[5] | LIU X, SHI X L, ZHANG L, et al. One-step post-treatment boosts thermoelectric properties of PEDOT:PSS flexible thin films. Journal of Materials Science & Technology, 2023, 132: 81. |
[6] |
LI F, WANG H, HUANG R, et al. Recent advances in SnSe nanostructures beyond thermoelectricity. Advanced Functional Materials, 2022, 32(26): 2200516.
DOI URL |
[7] |
ZHOU C, LEE Y K, YU Y, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nature Materials, 2021, 20(10): 1378.
DOI PMID |
[8] |
LI W H, DENG W H, WANG G E, et al. Conductive MOFs. EnergyChem, 2020, 2(2): 100029.
DOI URL |
[9] |
GOETJEN T A, LIU J, WU Y, et al. Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020, 56(72): 10409.
DOI PMID |
[10] |
JARAMILLO D E, JIANG H, EVANS H A, et al. Ambient- temperature hydrogen storage via vanadium(II)-dihydrogen complexation in a metal-organic framework. Journal of the American Chemical Society, 2021, 143(16): 6248.
DOI URL |
[11] |
LI P, SHEN Y, WANG D, et al. Selective adsorption-based separation of flue gas and natural gas in zirconium metal-organic frameworks nanocrystals. Molecules, 2019, 24(9): 1822.
DOI URL |
[12] |
LEE H, VASHAEE D, WANG D Z, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics, 2010, 107(9): 094308.
DOI URL |
[13] |
LE OUAY B, BOUDOT M, KITAO T, et al. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. Journal of the American Chemical Society, 2016, 138(32): 10088.
DOI PMID |
[14] | MINNICH A J, DRESSELHAUS M S, REN Z F, et al. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466. |
[15] |
XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks. Chemical Reviews, 2020, 120(16): 8536.
DOI PMID |
[16] |
SUN L, LIAO B, SHEBERLA D, et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule, 2017, 1(1): 168.
DOI URL |
[17] |
CHEN Z, CUI Y, JIN Y, et al. Nanorods of a novel highly conductive 2D metal-organic framework based on perthiolated coronene for thermoelectric conversion. Journal of Materials Chemistry C, 2020, 8(24): 8199.
DOI URL |
[18] |
ERICKSON K J, LEONARD F, STAVILA V, et al. Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Advanced Materials, 2015, 27(22): 3453.
DOI URL |
[19] |
DE LOURDES GONZALEZ-JUAREZ M, FLORE E, MARTIN-GONZALE M, et al. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal-organic framework thin film. Journal of Materials Chemistry A, 2020, 8(26): 13197.
DOI URL |
[20] |
GUTOV O V, HEVIA M G, ESCUDERO-ADAN E C, et al. Metal-organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorganic chemistry, 2015, 54(17): 8396.
DOI PMID |
[21] |
JADHAV A, GUPTA K, NINAWE P, et al. Imparting multifunctionality by utilizing biporosity in a zirconium-based metal-organic framework. Angewandte Chemie International Edition, 2020, 59(6): 2215.
DOI URL |
[22] |
PATIL A O, HEEGER A J, WUDL F. Optical properties of conducting polymers. Chemical Reviews, 1988, 88(1): 183.
DOI URL |
[23] |
HU Z, DING Y, HU X, et al. Recent progress in 2D group IV-IV monochalcogenides: synthesis, properties and applications. Nanotechnology, 2019, 30(25): 252001.
DOI URL |
[24] |
LINDFORS T, BOEVA Z A, LATONEN R M. Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide. RSC advances, 2014, 4(48): 25279.
DOI URL |
[25] |
BUTOVA V, BUDNYK A P, CHARYKOV K M, et al. Partial and complete substitution of the 1,4-benzenedicarboxylate linker in UiO-66 with 1,4-naphthalenedicarboxylate: synthesis, characterization, and H2-adsorption properties. Inorganic Chemistry, 2019, 58(2): 1607.
DOI URL |
[26] |
ALIEV S B, SAMSONENKO D G, MAKSIMOVSKIY E A, et al. Polyaniline-intercalated MIL-101: selective CO2 sorption and supercapacitor properties. New Journal of Chemistry, 2016, 40(6): 5306.
DOI URL |
[27] | WANG T C, HOD I, AUDU C O, et al. Rendering high surface area, mesoporous metal-organic frameworks electronically conductive. ACS Applied Materials & Interfaces, 2017, 9(14): 12584. |
[28] |
DHARE B, NAGARKAR S, KUMAR J, et al. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. The Journal of Physical Chemistry Letters, 2016, 7(15): 2945.
DOI URL |
[1] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[2] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[3] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[4] | 鲁志强, 刘可可, 李强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. p型多晶Bi0.5Sb1.5Te3合金类施主效应与热电性能[J]. 无机材料学报, 2023, 38(11): 1331-1337. |
[5] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[6] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
[7] | 任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰. Te与In共掺杂对Cu2SnSe3热电性能的影响[J]. 无机材料学报, 2022, 37(10): 1079-1086. |
[8] | 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏. Mg含量对Mg3(1+z)Sb2化合物热电传输性能的影响[J]. 无机材料学报, 2021, 36(8): 835-840. |
[9] | 梁凤青, 温兆银. 固态锂电池用MOF/聚氧化乙烯复合聚合物电解质[J]. 无机材料学报, 2021, 36(3): 332-336. |
[10] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[11] | 杨枭, 苏贤礼, 鄢永高, 唐新峰. (GeTe)nBi2Te3的结构与热电性能研究[J]. 无机材料学报, 2021, 36(1): 75-80. |
[12] | 罗世强, 郑春满, 孙巍巍, 谢威, 柯剑煌, 刘双科, 洪晓斌, 李宇杰, 许静. ZIF-67衍生Co-NC多孔碳材料的可控制备及其在锂-硫二次电池中的应用研究[J]. 无机材料学报, 2019, 34(5): 502-508. |
[13] | 李周, 肖翀. 异层等价离子双掺杂策略优化BiCuSeO的热电性能[J]. 无机材料学报, 2019, 34(3): 294-300. |
[14] | 胡慧珊, 杨君友, 辛集武, 李思慧, 姜庆辉. SnO的歧化反应对SnTe热电性能的优化[J]. 无机材料学报, 2019, 34(3): 315-320. |
[15] | 黄志成, 姚瑶, 裴俊, 董金峰, 张波萍, 李敬锋, 尚鹏鹏. n型SnS热电材料的制备与性能研究[J]. 无机材料学报, 2019, 34(3): 321-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||