无机材料学报 ›› 2023, Vol. 38 ›› Issue (9): 991-1004.DOI: 10.15541/jim20230105

所属专题: 【能源环境】钙钛矿(202312) 【能源环境】太阳能电池(202312)

• 综述 • 上一篇    下一篇

钙钛矿太阳能电池无机空穴传输材料的研究进展

陈雨1,2(), 林埔安1,2, 蔡冰2(), 张文华1,2()   

  1. 1.云南大学 材料与能源学院 西南联合研究生院, 昆明 650500
    2.中国工程物理研究院 化工材料研究所, 成都 610200
  • 收稿日期:2023-03-02 修回日期:2023-05-30 出版日期:2023-09-20 网络出版日期:2023-06-16
  • 通讯作者: 蔡 冰, 博士. E-mail: bingcai@caep.cn;
    张文华, 教授. E-mail: wenhuazhang@ynu.edu.cn
  • 作者简介:陈 雨(1993-), 男, 博士研究生. E-mail: 434980565@qq.com
  • 基金资助:
    国家自然科学基金(61904166)

Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells

CHEN Yu1,2(), LIN Puan1,2, CAI Bing2(), ZHANG Wenhua1,2()   

  1. 1. Southwest Joint Research Institute, School of Materials and Energy, Yunnan University, Kunming 650500, China
    2. Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China
  • Received:2023-03-02 Revised:2023-05-30 Published:2023-09-20 Online:2023-06-16
  • Contact: CAI Bing, PhD. E-mail: bingcai@caep.cn;
    ZHANG Wenhua, professor. E-mail: wenhuazhang@ynu.edu.cn
  • About author:CHEN Yu (1993-), male, PhD candidate. E-mail: 434980565@qq.com
  • Supported by:
    National Natural Science Foundation of China(61904166)

摘要:

有机−无机杂化钙钛矿太阳能电池(PSCs)因高能量转换效率(PCE)和低制造成本而受到了广泛关注。尽管认证PCE已经高达26%, 但在高温、高湿度和持续光照下PSCs的稳定性仍然明显落后于传统太阳能电池, 这成为其商业化道路中最大的阻碍。开发和应用高稳定性的无机空穴传输材料(HTMs)是目前解决器件光热稳定性的有效方法之一, 引入无机HTMs可以有效屏蔽水和氧对钙钛矿吸光层的侵蚀, 从而避免形成离子迁移通道。本文概述了应用于有机−无机杂化钙钛矿太阳能电池的无机HTMs的分类和光电特性, 介绍了相关研究进展, 总结了针对无机HTMs器件的性能优化策略, 包括元素掺杂、添加剂工程和界面工程, 最后展望了无机HTMs未来的发展方向。下一步需要更深入地研究无机HTMs的微观结构及其与PSCs性能的关系, 从而实现更高效、更稳定的PSCs器件。

关键词: 无机空穴传输材料, 钙钛矿太阳能电池, 稳定性, 能量转换效率, 综述

Abstract:

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted widespread attention due to their high power conversion efficiency (PCE) and low manufacturing cost. Although the certified PCE has reached 25.8%, the stability of PSCs under high temperature, high humidity, and continuous light exposure is still significantly inferior to that of traditional cells, which hinders their commercialization. Developing and applying highly stable inorganic hole transport materials (HTMs) is currently one of the effective methods to solve the photo-thermal stability of devices, which can effectively shield water and oxygen from corroding the perovskite absorption layer, thereby avoiding the formation of ion migration channels. This paper outlines the approximate classification and photoelectric properties of inorganic HTMs, introduces relevant research progress, summarizes performance optimization strategies for inorganic HTMs devices, including element doping, additive engineering, and interface engineering, and finally prospects the future development directions. It is necessary to further study the microstructure of inorganic HTMs and their relationship with the performance of PSCs to achieve more efficient and stable PSCs.

Key words: inorganic hole transport materials, perovskite solar cells, stability, power conversion efficiency, review

中图分类号: