无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 606-618.DOI: 10.15541/jim20220601

• 综述 • 上一篇    下一篇

铁电超晶格的研究进展

林俊良1(), 王占杰2()   

  1. 1.辽宁大学 轻型产业学院, 沈阳 110036
    2.沈阳工业大学 材料科学与工程学院, 沈阳 110870
  • 收稿日期:2022-10-13 修回日期:2022-11-14 出版日期:2023-02-07 网络出版日期:2023-02-07
  • 通讯作者: 王占杰, 教授. E-mail: wangzj@imr.ac.cn
  • 作者简介:林俊良(1991-), 男, 博士, 讲师. E-mail: jllin14s@163.com
  • 基金资助:
    辽宁省教育厅科学研究经费项目(LJKZ0100);辽宁省教育厅科学研究经费项目(LZGD2017005)

Research Progress on Ferroelectric Superlattices

LIN Junliang1(), WANG Zhanjie2()   

  1. 1. College of Light Industry, Liaoning University, Shenyang 110036, China
    2. School of Materials Sciences and Engineering, Shenyang University of Technology, Shenyang 110870, China
  • Received:2022-10-13 Revised:2022-11-14 Published:2023-02-07 Online:2023-02-07
  • Contact: WANG Zhanjie, professor. E-mail: wangzj@imr.ac.cn
  • About author:LIN Junliang (1991-), male, PhD, lecturer. E-mail: jllin14s@163.com
  • Supported by:
    Scientific Research Fund Project of the Educational Department of Liaoning Province of China(LJKZ0100);Scientific Research Fund Project of the Educational Department of Liaoning Province of China(LZGD2017005)

摘要:

铁电超晶格是由两种或两种以上的铁电材料或非铁电材料在晶胞尺度下交替生长而形成,并具有层状周期性结构的人工薄膜材料。铁电超晶格由于其中存在大量的异质界面, 异常显著的界面效应使其具有优异的铁电、压电、介电和热释电等性能, 甚至表现出其构成材料不具备的新功能特性。铁电超晶格不仅为研究复杂氧化物材料界面电荷和晶格之间的相互作用提供了一个理想的平台, 还将在下一代集成铁电器件中发挥不可或缺的作用。随着制备和表征手段不断进步, 研究人员能够在原子尺度上设计和调控铁电超晶格的微结构和化学成分以提高铁电超晶格的功能特性。铁电极化是铁电薄膜材料最基本的性质, 除了用于信息存储, 还在调节集成铁电器件(如压电器件、光伏器件和电热器件)的能量转换性能方面也发挥着重要作用。因此, 铁电超晶格的铁电极化强度的大小直接决定了由其构成的集成铁电器件的功能特性和实际应用价值。本文首先介绍了铁电超晶格的结构特征、分类以及几种典型的功能特性, 然后结合近期的研究结果重点阐述了影响铁电超晶格极化性能的几种因素, 包括应变效应、静电耦合效应、缺陷效应和周期厚度等, 最后展望了铁电超晶格的未来研究方向, 以期为该领域的研究提供参考。

关键词: 超晶格, 应变效应, 静电耦合效应, 界面效应, 铁电性能, 综述

Abstract:

Ferroelectric superlattices are artificial film materials with layered periodic structure formed by an alternate growth of two or more ferroelectric materials or non-ferroelectric materials at unit cell scale. Ferroelectric superlattices can exhibit excellent ferroelectric, piezoelectric, dielectric, and pyroelectric properties due to the existence of a large number of heterogeneous interfaces and the remarkable interface effect, and even show new functional properties that are not available in their constituent materials. Therefore, ferroelectric superlattices not only provide an ideal platform for studying interactions between charges and lattices at the interface of complex oxide materials, but also play an indispensable role in the next generation of integrated ferroelectric devices. With the development of preparation and characterization methods, researchers can design and control the microstructure and chemical composition at atomic scale to improve the functional properties of ferroelectric superlattice thin films. Ferroelectric polarization is the most basic property of ferroelectric film materials. In addition to being used for information storage devices, ferroelectric polarization also plays an important role in regulating the energy conversion performance of integrated ferroelectric devices such as piezoelectric devices, photovoltaic devices and electrocaloric devices. Therefore, the ferroelectric polarization intensity of ferroelectric superlattices directly determines their functional characteristics and practical application value of integrated ferroelectric devices composed of them. In this short review paper, we firstly introduced the structural characteristics, classification and several typical functional characteristics of ferroelectric superlattices, and then focused on several factors affecting the polarization performance of ferroelectric superlattices based on recent research results, including strain effect, electrostatic coupling effect, defect effect, and period thickness. Finally, we looked forward to the future research directions in ferroelectric superlattices to provide reference for the research in this field.

Key words: superlattice, strain effect, electrostatic coupling effect, interface effect, ferroelectric property, review

中图分类号: