无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 606-618.DOI: 10.15541/jim20220601
收稿日期:
2022-10-13
修回日期:
2022-11-14
出版日期:
2023-02-07
网络出版日期:
2023-02-07
通讯作者:
王占杰, 教授. E-mail: wangzj@imr.ac.cn作者简介:
林俊良(1991-), 男, 博士, 讲师. E-mail: jllin14s@163.com
基金资助:
LIN Junliang1(), WANG Zhanjie2()
Received:
2022-10-13
Revised:
2022-11-14
Published:
2023-02-07
Online:
2023-02-07
Contact:
WANG Zhanjie, professor. E-mail: wangzj@imr.ac.cnAbout author:
LIN Junliang (1991-), male, PhD, lecturer. E-mail: jllin14s@163.com
Supported by:
摘要:
铁电超晶格是由两种或两种以上的铁电材料或非铁电材料在晶胞尺度下交替生长而形成,并具有层状周期性结构的人工薄膜材料。铁电超晶格由于其中存在大量的异质界面, 异常显著的界面效应使其具有优异的铁电、压电、介电和热释电等性能, 甚至表现出其构成材料不具备的新功能特性。铁电超晶格不仅为研究复杂氧化物材料界面电荷和晶格之间的相互作用提供了一个理想的平台, 还将在下一代集成铁电器件中发挥不可或缺的作用。随着制备和表征手段不断进步, 研究人员能够在原子尺度上设计和调控铁电超晶格的微结构和化学成分以提高铁电超晶格的功能特性。铁电极化是铁电薄膜材料最基本的性质, 除了用于信息存储, 还在调节集成铁电器件(如压电器件、光伏器件和电热器件)的能量转换性能方面也发挥着重要作用。因此, 铁电超晶格的铁电极化强度的大小直接决定了由其构成的集成铁电器件的功能特性和实际应用价值。本文首先介绍了铁电超晶格的结构特征、分类以及几种典型的功能特性, 然后结合近期的研究结果重点阐述了影响铁电超晶格极化性能的几种因素, 包括应变效应、静电耦合效应、缺陷效应和周期厚度等, 最后展望了铁电超晶格的未来研究方向, 以期为该领域的研究提供参考。
中图分类号:
林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618.
LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices[J]. Journal of Inorganic Materials, 2023, 38(6): 606-618.
图2 铁电/顺电超晶格中发现的极化拓扑结构示意图[28]
Fig. 2 Schematic diagrams of topological polar structures found in ferroelectric/paraelectric superlattices[28] (a, b) Maps of the polar atomic displacement vectors showing the flux-closure array in the PbTiO3 layer; (c) Schematics of four newly identified topological polar structures in ferroelectric films
图3 (SrTiO3)9/(SrRuO3)1超晶格中氧空位存在时不同位置的极化强度和氧空位形成能的第一性原理计算结果[56]
Fig. 3 Position dependence of average net polarization and oxygen vacancy formation energy calculated from the first principles when an oxygen vacancy is introduced into the (SrTiO3)9/(SrRuO3)1 superlattice[56] (a) Average net polarization; (b) Oxygen vacancy formation energy
图4 (SrTiO3)25/(SrRuO3)2超晶格的STEM图像和铁电性能表征结果[59]
Fig. 4 STEM images and ferroelectric properties of the (SrTiO3)25/(SrRuO3)2 superlattice[59] (a, b) Low-magnification and high-magnification HAADF-STEM images; (c-g) Atomically resolved EDS mappings; (h-j) Polar vector distribution; (k-m) Ferroelectric properties
图5 BaTiO3/SrTiO3/CaTiO3三色铁电超晶格[10]
Fig. 5 BaTiO3/SrTiO3/CaTiO3 tricolor superlattices[10] (a) Cross-sectional atomic number (Z)-contrast scanning transmission electron microscopy (Z-STEM) image and atomic structure diagram; (b, c) P-E hysteresis loops, lattice constants and polarizations with different period thicknesses Colorful figures are available on website
图6 (BaTiO3)n/(SrTiO3)n超晶格的周期厚度与极化性能的关系[90]
Fig. 6 Polarization properties of the (BaTiO3)n/(SrTiO3)n superlattices under different period thicknesses[90] (a) BaTiO3 c-axis parameter and remnant polarization as a function of the number (n) of unit cells in (BaTiO3)n/(SrTiO3)n superlattice; (b) Remnant polarization as a function of the c-axis parameter of BaTiO3; (c) Sketch of possible ferroelectric domains with different superlattice period thicknesses 1 Å = 0.1 nm
图7 (PbTiO3)n/(SrTiO3)n超晶格中的180°铁电畴结构[95]
Fig. 7 180° domain structures in the (PbTiO3)n/(SrTiO3)n superlattices[95] (a) Schematic diagram of the 180° domain structure; (b) Reciprocal space map; (c) Domain periodicities along the [100] direction as a function of PbTiO3 layer thickness 1 Å = 0.1 nm
图8 BaTiO3/Pb(Zr0.52Ti0.48)O3铁电超晶格的电学性能[9]
Fig. 8 Electrical properties of the BaTiO3/Pb(Zr0.52Ti0.48)O3 ferroelectric superlattice[9] (a) Schematic diagram of space charges accumulation; (b) Dielectric properties; (c) Leakage current curves; (d) P-E hysteresis loops
图9 具有不同导电层厚度的BaTiO3/LaNiO3超晶格[61]和PbZr0.52Ti0.48O3/SrRuO3超晶格[62]
Fig. 9 BaTiO3/LaNiO3[61] and PbZr0.52Ti0.48O3/SrRuO3[62] superlattices with different metallic layer thicknesses (a, b) P-E hysteresis loops and leakage current curves of the BaTiO3/LaNiO3 superlattices with different LaNiO3 thicknesses; (c) TEM, (d) HRTEM images and (e) P-E hysteresis loops of the PbZr0.52Ti0.48O3/SrRuO3 superlattices with different SrRuO3 thicknesses Colorful figures are available on website
[1] |
MARTIN L W, RAPPE A M. Thin-film ferroelectric materials and their applications. Nature Reviews Materials, 2016, 2(2):16087.
DOI |
[2] |
WANG Z J, BAI Y. Resistive switching behavior in ferroelectric heterostructures. Small, 2019, 15(32):1805088.
DOI URL |
[3] |
KIM J Y, CHOI M J, JANG H W. Ferroelectric field effect transistors: progress and perspective. APL Materials, 2021, 9(2):021102.
DOI URL |
[4] |
LEE Y C, TSAI C C, LI C Y, et al. Fabrication and function examination of PZT-based MEMS accelerometers. Ceramics International, 2021, 47(17):24458.
DOI URL |
[5] |
RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 2019, 4: 257.
DOI |
[6] |
DAWBER M, BOUSQUET E. New developments in artificially layered ferroelectric oxide superlattices. MRS Bulletin, 2013, 38(12):1048.
DOI URL |
[7] |
TENNE D A, BRUCHHAUSEN A, LANZILLOTTI-KIMURA N D, et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science, 2006, 313(5793):1614.
PMID |
[8] |
SEO S S A, LEE J H, LEE H N, et al. Ferroelectricity in artificial bicolor oxide superlattices. Advanced Materials, 2007, 19(18):2460.
DOI URL |
[9] | HE B, WANG Z. Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 2016, 8(10):6736. |
[10] |
LEE H N, CHRISTEN H M, CHISHOLM M F, et al. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature, 2005, 433(7024):395.
DOI |
[11] |
HONG L, WU P, LI Y, et al. Piezoelectric enhancement of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices through domain engineering. Physical Review B, 2014, 90(17):174111.
DOI URL |
[12] |
WANG Z, CAO H, LIU Q, et al. The enhanced ferroelectricity in Sr1-δTiO3/BaTiO3superlattices with Sr deficiency. Journal of Physics D: Applied Physics, 2020, 53(31):314004.
DOI URL |
[13] |
BOUSQUET E, DAWBER M, STUCKI N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452(7188):732.
DOI |
[14] |
XU B, WANG D, ZHAO H J, et al. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Advanced Functional Materials, 2015, 25(24):3626.
DOI URL |
[15] |
RAVICHANDRAN J, YADAV A K, CHEAITO R, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Materials, 2014, 13(2):168.
DOI PMID |
[16] |
CAO Y, WANG Z, PARK S Y, et al. Artificial two-dimensional polar metal at room temperature. Nature Communications, 2018, 9(1):1547.
DOI PMID |
[17] |
YE M, HU S, ZHU Y, et al. Electric polarization switching on an atomically thin metallic oxide. Nano Letters, 2021, 21(1):144.
DOI PMID |
[18] |
NIRANJAN M K, WANG Y, JASWAL S S, et al. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Physical Review Letters, 2009, 103(1):016804.
DOI URL |
[19] |
VERISSIMO-ALVES M, GARCIA-FERNANDEZ P, BILC D I, et al. Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Physical Review Letters, 2012, 108(10):107003.
DOI URL |
[20] |
OHTA H, KIM S, MUNE Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2):129.
PMID |
[21] | ZHOU P X, LIU H M, YAN Z B, et al. Magnetic properties and electronic structures of (YTiO3)2/(BaTiO3)n superlattices. Journal of Applied Physics, 2014, 115(17): 17D710. |
[22] |
ZUBKO P, WOJDEŁ J C, HADJIMICHAEL M, et al. Negative capacitance in multidomain ferroelectric superlattices. Nature, 2016, 534(7608):524.
DOI |
[23] |
GAO W, KHAN A, MARTI X, et al. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. Nano Letters, 2014, 14(10):5814.
DOI PMID |
[24] |
GRAF M, ARAMBERRI H, ZUBKO P, et al. Giant voltage amplification from electrostatically induced incipient ferroelectric states. Nature Materials, 2022, 21(11):1252.
DOI PMID |
[25] |
YADAV A K, NELSON C T, HSU S L, et al. Observation of polar vortices in oxide superlattices. Nature, 2016, 530(7589):198.
DOI |
[26] |
HONG Z, CHEN L Q. Switchable polar spirals in tricolor oxide superlattices. Acta Materialia, 2019, 164:493.
DOI |
[27] |
DAS S, TANG Y L, HONG Z, et al. Observation of room- temperature polar skyrmions. Nature, 2019, 568(7752):368.
DOI |
[28] |
TANG Y L, ZHU Y L, MA X L. Topological polar structures in ferroelectric oxide films. Journal of Applied Physics, 2021, 129(20):200904.
DOI URL |
[29] |
HONG Z, DAMODARAN A R, XUE F, et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Letters, 2017, 17(4):2246.
DOI PMID |
[30] |
JANG H W, KUMAR A, DENEV S, et al. Ferroelectricity in strain-free SrTiO3 thin films. Physical Review Letters, 2010, 104(19):197601.
DOI URL |
[31] |
LUO B, WANG X, TIAN E, et al. Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. Journal of Materials Chemistry C, 2015, 3(33):8625.
DOI URL |
[32] |
TABATA H, TANAKA H, KAWAI T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Applied Physics Letters, 1994, 65(15): 1970.
DOI URL |
[33] |
DAS S, HONG Z, MCCARTER M, et al. A new era in ferroelectrics. APL Materials, 2020, 8(12):120902.
DOI URL |
[34] |
DAS S, GHOSH A, MCCARTER M R, et al. Perspective: emergent topologies in oxide superlattices. APL Materials, 2018, 6(10):100901.
DOI URL |
[35] |
BENYOUSSEF M, BELHADI J, LAHMAR A, et al. Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Materials Letters, 2019, 234: 279.
DOI URL |
[36] |
SUN Z, MA C, LIU M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Advanced Materials, 2017, 29(5):1604427.
DOI URL |
[37] |
ARAMBERRI H, FEDOROVA N S, INIGUEZ J. Ferroelectric/ paraelectric superlattices for energy storage. Science Advances, 2022, 8(31):eabn4880.
DOI URL |
[38] |
YUN Y, MUHLENBEIN L, KNOCHE D S, et al. Strongly enhanced and tunable photovoltaic effect in ferroelectric- paraelectric superlattices. Science Advances, 2021, 7(23):eabe4206.
DOI URL |
[39] |
JI Y, CHEN W J, ZHENG Y. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics D: Applied Physics, 2020, 53(50):505302.
DOI |
[40] |
LIN J L, WANG Z J, ZHAO X, et al. Microstructures and ferroelectric properties of PbTiO3/PbZrO3 superlattices deposited by pulse laser deposition. Ceramics International, 2018, 44(17):20664.
DOI URL |
[41] |
CHOI T, LEE J. Structural and dielectric properties of artificial PbZrO3/PbTiO3 superlattices grown by pulsed laser deposition. Thin Solid Films, 2005, 475(1/2):283.
DOI URL |
[42] |
BASTANI Y, BASSIRI-GHARB N. Enhanced dielectric and piezoelectric response in PZT superlattice-like films by leveraging spontaneous Zr/Ti gradient formation. Acta Materialia, 2012, 60(3):1346.
DOI URL |
[43] |
VREJOIU I, ZHU Y, LE RHUN G, et al. Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3/PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition. Applied Physics Letters, 2007, 90(7):072909.
DOI URL |
[44] |
LUPI E, GHOSH A, SAREMI S, et al. Large polarization and susceptibilities in artificial morphotropic phase boundary PbZr1-xTixO3 superlattices. Advanced Electronic Materials, 2020, 6(3):1901395.
DOI URL |
[45] |
LU Y. Dielectric and ferroelectric behaviors in Pb(Mg1/3Nb2/3)O3- PbTiO3 rhombohedral/tetragonal superlattices. Applied Physics Letters, 2004, 85(6):979.
DOI URL |
[46] | LIN Q, WANG D, CHEN Z, et al. Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 2015, 7(47):26301. |
[47] |
KANNO I, HAYASHI S, TAKAYAMA R, et al. Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering. Applied Physics Letters, 1996, 68(3):328.
DOI URL |
[48] |
LIANG Y C, LIANG Y C. Effects of substrate temperature on the physical properties of strained BaTiO3/LaNiO3 artificial superlattices. Journal of Crystal Growth, 2005, 285(3):345.
DOI URL |
[49] |
TSENG J Y, WU T B. Dielectric enhancement in (001)-textured BaTiO3/LaNiO3superlattice. Materials Chemistry and Physics, 2004, 88(2/3):433.
DOI URL |
[50] |
XIA J, SIEMONS W, KOSTER G, et al. Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3. Physical Review B, 2009, 79(14):140407(R).
DOI URL |
[51] |
SCHERWITZL R, GARIGLIO S, GABAY M, et al. Metal- insulator transition in ultrathin LaNiO3 films. Physical Review Letters, 2011, 106(24):246403.
DOI URL |
[52] |
LIAO Z, LI F, GAO P, et al. Origin of the metal-insulator transition in ultrathin films of La2/3Sr1/3MnO3. Physical Review B, 2015, 92(11):125123.
DOI URL |
[53] |
CALLORI S J, GABEL J, SU D, et al. Ferroelectric PbTiO3/ SrRuO3 superlattices with broken inversion symmetry. Physical Review Letters, 2012, 109(6):067601.
DOI URL |
[54] |
ROWLEY S E, SPALEK L J, SMITH R P, et al. Ferroelectric quantum criticality. Nature Physics, 2014, 10(5):367.
DOI |
[55] |
YIN L H, SHI T F, ZHANG R R, et al. Electric dipoles via Cr3+(d3) ion off-center displacement in perovskite DyCrO3. Physical Review B, 2018, 98(5):054301.
DOI URL |
[56] | HE R, LIN J L, LIU Q, et al. Emergent ferroelectricity in otherwise nonferroelectric oxides by oxygen vacancy design at heterointerfaces. ACS Applied Materials & Interfaces, 2020, 12(40):45602. |
[57] |
TSURUMI T, HARIGAI T, TANAKA D, et al. Artificial ferroelectricity in perovskite superlattices. Applied Physics Letters, 2004, 85(21):5016.
DOI URL |
[58] |
YANG K, WANG C, LI J, et al. Structural and polarization properties of short-period SrZrO3/SrTiO3superlattices. Physical Review B, 2007, 75(22):224117.
DOI URL |
[59] |
LIN J L, SUN Y, HE R, et al. Colossal room-temperature ferroelectric polarizations in SrTiO3/SrRuO3 superlattices induced by oxygen vacancies. Nano Letters, 2022, 22(17):7104.
DOI URL |
[60] |
STARSCHICH S, MENZEL S, BÖTTGER U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Applied Physics Letters, 2016, 108(3):032903.
DOI URL |
[61] |
LIN J L, WANG Z J, ZHAO X, et al. Significantly enhanced ferroelectric and dielectric properties in BaTiO3/LaNiO3 superlattices. Scripta Materialia, 2020, 179: 102.
DOI URL |
[62] |
LIN J L, WANG Z J, ZHAO X, et al. Effect of SrRuO3 layer thickness on electrical properties of Pb(Zr0.52Ti0.48)O3/SrRuO3 superlattices. Ceramics International, 2020, 46(7):9328.
DOI URL |
[63] |
O’NEILL D, BOWMAN R M, GREGG J M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Applied Physics Letters, 2000, 77(10):1520.
DOI URL |
[64] |
DARINSKII B M, SIDORKIN A S, SIGOV A S. Influence of misfit stresses on the dielectric permeability of ferroelectric superlattices BaTiO3/BaZrO3. Nanocomposites, 2021, 7(1):154.
DOI URL |
[65] |
CHEN M J, NING X K, WANG S F, et al. Enhanced polarization and dielectricity in BaTiO3:NiO nanocomposite films modulated by the microstructure. RSC Advances, 2017, 7(61):38231.
DOI URL |
[66] |
OKATAN M B, MISIRLIOGLU I B, ALPAY S P. Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Physical Review B, 2010, 82(9):094115.
DOI URL |
[67] |
HADJIMICHAEL M, LI Y, YEDRA L, et al. Domain structure and dielectric properties of metal-ferroelectric superlattices with asymmetric interfaces. Physical Review Materials, 2020, 4(9):094415.
DOI URL |
[68] |
PETROV P K, ZOU B, WANG Y, et al. STO/BTO modulated superlattice multilayer structures with atomically sharp interfaces. Advanced Materials Interfaces, 2014, 1(3):1300116.
DOI URL |
[69] |
KANNO I. Piezoelectric MEMS: ferroelectric thin films for MEMS applications. Japanese Journal of Applied Physics, 2018, 57(4):040101.
DOI URL |
[70] |
SINSHEIMER J, CALLORI S J, BEIN B, et al. Engineering polarization rotation in a ferroelectric superlattice. Physical Review Letters, 2012, 109(16):167601.
DOI URL |
[71] |
COOPER V R, RABE K M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Physical Review B, 2009, 79(18):180101(R).
DOI URL |
[72] |
SHARMA N D, LANDIS C M, SHARMA P. Piezoelectric thin- film superlattices without using piezoelectric materials. Journal of Applied Physics, 2010, 108(2):024304.
DOI URL |
[73] |
JIN C, GENG W, WANG L, et al. Tuning ferroelectricity and ferromagnetism in BiFeO3/BiMnO3 superlattices. Nanoscale, 2020, 12(17):9810.
DOI URL |
[74] |
GUO M, TAN G, YANG W, et al. Resistive switching and ferroelectric properties in BiFeO3 superlattice films. Materials Letters, 228: 13.
DOI URL |
[75] |
CUI Z, GRUTTER A J, ZHOU H, et al. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 2020, 6(15):eaay0114.
DOI URL |
[76] | JEONG S G, HAN G, SONG S, et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Advanced Science, 2020: 2001643. |
[77] |
GU M, XIE Q, SHEN X, et al. Magnetic ordering and structural phase transitions in a strained ultrathin SrRuO3/SrTiO3 superlattice. Physical Review Letters, 2012, 109(15):157003.
DOI URL |
[78] |
GARCÍA-FERNÁNDEZ P, VERISSIMO-ALVES M, BILC D I, et al. First-principles modeling of the thermoelectric properties of SrTiO3/SrRuO3superlattices. Physical Review B, 2012, 86(8):085305.
DOI URL |
[79] |
CHOI K J. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698):1005.
DOI URL |
[80] |
SCHLOM D G, CHEN L Q, EOM C B, et al. Strain tuning of ferroelectric thin films. Annual Review of Materials Research, 2007, 37(1):589.
DOI URL |
[81] |
WARUSAWITHANA M P, KENGLE C S, ZHAN X, et al. Asymmetric ferroelectricity by design in atomic-layer superlattices with broken inversion symmetry. Physical Review B, 2021, 104(8):085103.
DOI URL |
[82] |
HWANG J, FENG Z, CHARLES N, et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31: 100.
DOI URL |
[83] |
ZHU Z Y, WANG S Q, FU Y M. First-principles study of properties of strained PbTiO3/KTaO3 superlattice. Chinese Physics Letters, 2016, 33(2):026302.
DOI URL |
[84] |
RONDINELLI J M, FENNIE C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 2012, 24(15): 1961.
DOI URL |
[85] |
AGUADO-PUENTE P, GARCIA-FERNANDEZ P, JUNQUERA J. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Physical Review Letters, 2011, 107(21):217601.
DOI URL |
[86] |
NAKHMANSON S M, RABE K M, VANDERBILT D. Polarization enhancement in two- and three-component ferroelectric superlattices. Applied Physics Letters, 2005, 87(10):102906.
DOI URL |
[87] |
CHEN B, GAUQUELIN N, STRKALJ N, et al. Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon. Nature Communications, 2022, 13(1):265.
DOI |
[88] |
ORTEGA N, KUMAR A, RESTO O, et al. Compositional engineering of BaTiO3/(Ba,Sr)TiO3 ferroelectric superlattices. Journal of Applied Physics, 2013, 114(10):104102.
DOI URL |
[89] |
BOLDYREVA K, PINTILIE L, LOTNYK A, et al. Thickness- driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3/Pb(Zr0.8Ti0.2)O3 multilayers. Applied Physics Letters, 2007, 91(12):122915.
DOI URL |
[90] |
KHESTANOVA E, DIX N, FINA I, et al. Untangling electrostatic and strain effects on the polarization of ferroelectric superlattices. Advanced Functional Materials, 2016, 26(35):6446.
DOI URL |
[91] |
LIM K G, CHEW K H, WANG D Y, et al. Charge compensation phenomena for polarization discontinuities in ferroelectric superlattices. Europhysics Letters, 2014, 108(6):67011.
DOI URL |
[92] |
CHEW K H, LIM K G, ONG L H. Polarization discontinuity and interface charges in ferroelectric superlattices. Ferroelectrics, 2016, 490(1):149.
DOI URL |
[93] |
WU X, RABE K M, VANDERBILT D. Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3superlattices. Physical Review B, 2011, 83(2):020104(R).
DOI URL |
[94] |
SEO S S A, LEE H N. Strain-coupled ferroelectric polarization in BaTiO3-CaTiO3 superlattices. Applied Physics Letters, 2009, 94(23):232904.
DOI URL |
[95] |
ZUBKO P, JECKLIN N, TORRES-PARDO A, et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Letters, 2012, 12(6):2846.
DOI PMID |
[96] |
AIDHY D S, RAWAT K. Coupling between interfacial strain and oxygen vacancies at complex-oxides interfaces. Journal of Applied Physics, 2021, 129(17):171102.
DOI URL |
[97] | LI W, ZHAO R, TANG R, et al. Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films. ACS Applied Materials & Interfaces, 2014, 6(8):5356. |
[98] |
LIU Y, ZHU Y L, TANG Y L, et al. Local enhancement of polarization at PbTiO3/BiFeO3 interfaces mediated by charge transfer. Nano Letters, 2017, 17(6):3619.
DOI URL |
[99] |
LIN J L, HE R, LU Z, et al. Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films. Acta Materialia, 2020, 199: 9.
DOI URL |
[100] |
COOPER V R, JOHNSTON K, RABE K M. Polarization enhancement in short period superlattices via interfacial intermixing. Physical Review B, 2007, 76(2):020103(R).
DOI URL |
[101] |
PERTSEV N A, TYUNINA M. Interfacial nanolayers and permittivity of ferroelectric superlattices. Journal of Applied Physics, 2011, 109(12):126101.
DOI URL |
[102] |
HUNG C L, CHUEH Y L, WU T B, et al. Characteristics of constrained ferroelectricity in PbZrO3/BaZrO3 superlattice films. Journal of Applied Physics, 2005, 97(3):034105.
DOI URL |
[103] |
ISHIBASHI Y, OHASHI N, TSURUMI T. Structural refinement of X-ray diffraction profile for artificial superlattices. Japanese Journal of Applied Physics, 2000, 39(1):186.
DOI |
[104] |
KAN D, ASO R, SATO R, et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Materials, 2016, 15(4):432.
DOI PMID |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[5] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[6] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[7] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[8] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[9] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[10] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[11] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[12] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[13] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||