无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 335-342.DOI: 10.15541/jim20220645

• 研究快报 • 上一篇    下一篇

半密封直拉法生长6英寸磷化铟单晶热场研究

史艳磊1,2(), 孙聂枫2(), 徐成彦1, 王书杰2, 林朋2, 马春雷2, 徐森锋2, 王维2, 陈春梅2, 付莉杰2, 邵会民2, 李晓岚2, 王阳2, 秦敬凯1()   

  1. 1.哈尔滨工业大学(深圳)材料科学与工程学院, 索维奇智能材料实验室, 深圳518055
    2.中国电子科技集团公司 第十三研究所, 专用集成电路重点实验室, 石家庄 050051
  • 收稿日期:2022-11-01 修回日期:2022-12-14 出版日期:2023-01-17 网络出版日期:2023-01-17
  • 通讯作者: 孙聂枫, 研究员. E-mail: snf2015@126.com;
    秦敬凯, 讲师. E-mail: jk.qin@hit.edu.cn
  • 作者简介:史艳磊(1986-), 男, 高级工程师. E-mail: shiyanlei100@163.com

Thermal Field of 6-inch Indium Phosphide Single Crystal Growth by Semi-sealed Czochralski Method

SHI Yanlei1,2(), SUN Niefeng2(), XU Chengyan1, WANG Shujie2, LIN Peng2, MA Chunlei2, XU Senfeng2, WANG Wei2, CHEN Chunmei2, FU Lijie2, SHAO Huimin2, LI Xiaolan2, WANG Yang2, QIN Jingkai1()   

  1. 1. Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
    2. National Key Laboratory of ASIC, The 13th Research Institute of China Electronic Technology Group Corporation, Shijiazhuang 050051, China
  • Received:2022-11-01 Revised:2022-12-14 Published:2023-01-17 Online:2023-01-17
  • Contact: SUN Niefeng, professor. E-mail: snf2015@126.com;
    QIN Jingkai, lecturer. E-mail: jk.qin@hit.edu.cn
  • About author:SHI Yanlei (1986-), male, senior engineer. E-mail: shiyanlei100@163.com
  • Supported by:
    National Natural Science Foundation of China(51871202);National Natural Science Foundation of China(51401186);S&T Program of Hebei(20311001D)

摘要:

磷化铟(InP)是一种重要的化合物半导体材料。InP由于性能优异,在高频电子器件及红外光电器件领域的应用日趋增多。目前,磷化铟器件的价格远高于砷化镓器件,其主要原因是磷化铟单晶成品率低,以及晶圆尺寸较小造成外延和器件工艺成本居高不下。增大InP单晶的直径对降低晶圆及半导体工艺成本至关重要。制备大尺寸InP单晶的主要难点是提高晶体的成品率和降低晶体的应力。目前行业内通常使用垂直梯度凝固(Vertical gradient freeze, VGF)法和液封直拉(Liquid Encapsulated Czochralski, LEC)法制备InP。 VGF法在制备6英寸(15.24 cm)InP方面鲜有建树, LEC法制备的晶体往往具有更高的应力和位错密度。本研究展示了半密封直拉(Semi-Sealed Czochralski, SSC)法在生长大直径化合物半导体材料方面的优势,采用数值模拟方法分析了LEC法和SSC法中熔体、晶体、氧化硼和气氛中的温度分布,重点分析了SSC技术的温度分布。模拟结果中,SSC法晶体中的温度梯度为17.4 K/cm,明显低于LEC法中的温度梯度28.7 K/cm。在等径阶段SSC法晶体肩部附近气氛温度比LEC法高504 K。根据模拟结果对SSC法热场进行了优化后,本研究得到了低缺陷密度、无裂纹的6英寸S掺杂InP单晶,证实了SSC法应用于大尺寸InP单晶生长的优势。

关键词: 磷化铟, 半密封直拉, 数值模拟, 热场

Abstract:

Indium phosphide (InP) is a kind of important compound semiconductor material, now increasingly used in high frequency electronic devices and infrared optoelectronic devices. Currently, the price of InP devices is much higher than that of GaAs devices, mainly because of its low yield of single crystals and increase of epitaxy, and device process cost due to smaller wafer diameter. Increasing the diameter of InP single crystals is critical to reducing wafer and semiconductor process costs. The main difficulties in preparing large diameter InP single crystals are increasing crystal yield and reducing stress in the crystal. The vertical gradient freeze (VGF) and the liquid encapsulated Czochralski (LEC) methods are commonly used in the industry to prepare InP, while the VGF method has little success in preparing 6-inch InP crystals, and the crystals prepared by the LEC method tend to have higher stress and dislocation density. Here we reported a semi-sealed Czochralski (SSC) method to grow large diameter InP crystals. Numerical simulations were used to analyze the temperature distribution in melt, crystal, boron oxide, and atmosphere in LEC and SSC method, with emphasis on temperature field of the SSC method. As a simulation result, the temperature gradient in the crystal of SSC method is 17.4 K/cm, significantly lower thanthat of 28.7 K/cm in the LEC method. And temperature of atmosphere near the crystal shoulder in the diameter control stage of the SSC method is 504 K higher than that of the LEC method. Then the used thermal field of SSC method was optimized according to the simulation results, and 6-inch (1 inch=2.54 cm) S doped InP single crystals with low defect density and no cracks were prepared by this optimized method, which confirmed that the optimized SSC method is promising for growing large-size InP single crystals.

Key words: indium phosphide, semi-sealed Czochralski, numerical simulation, thermal field

中图分类号: