无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 303-309.DOI: 10.15541/jim20220633

• 研究论文 • 上一篇    下一篇

等离子体聚集装置下的高能量密度单晶金刚石快速生长研究

李一村1(), 刘雪冬1, 郝晓斌1, 代兵1(), 吕继磊2, 朱嘉琦1   

  1. 1.哈尔滨工业大学 航天学院, 哈尔滨 150000
    2.湖北碳六科技有限公司, 宜昌 443000
  • 收稿日期:2022-10-27 修回日期:2022-12-18 出版日期:2023-01-11 网络出版日期:2023-01-11
  • 通讯作者: 代 兵, 教授. E-mail: daibinghit@vip.126.com
  • 作者简介:李一村(1996-), 男, 博士研究生. E-mail: 741624995@qq.com
  • 基金资助:
    国家自然科学基金(52072087);国家重点研发计划(2020YFA0709700);黑龙江省自然科学基金(YQ2020E008)

Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing

LI Yicun1(), LIU Xuedong1, HAO Xiaobin1, DAI Bing1(), LYU Jilei2, ZHU Jiaqi1   

  1. 1. School of Astronautics, Harbin Institute of Technology, Harbin 150000, China
    2. Hubei Carbon Six Science and Technology Co., Ltd, Yichang 443000, China
  • Received:2022-10-27 Revised:2022-12-18 Published:2023-01-11 Online:2023-01-11
  • Contact: DAI Bing, professor. E-mail: daibinghit@vip.126.com
  • About author:LI Yicun (1996-), male, PhD candidate. E-mail: 741624995@qq.com
  • Supported by:
    National Natural Science Foundation of China(52072087);National Key R&D Program of China(2020YFA0709700);Natural Science Foundation of Heilongjiang Province(YQ2020E008)

摘要:

单晶金刚石是一种性能优异的晶体材料, 在先进科学领域具有重要的应用价值。在微波等离子体化学气相沉积(Microwave plasma chemical vapor deposition, MPCVD)单晶金刚石生长中, 如何提高晶体的生长速率一直是研究者们关注的重点问题之一, 而采用高能量密度的等离子体是提高单晶金刚石生长速率的有效手段。在本研究中, 首先通过磁流体动力学(Magnetohydrodynamic, MHD)模型仿真计算, 优化设计了特殊的等离子体聚集装置; 随后基于模拟结果进行生长实验, 采用光谱分析和等离子体成像对等离子体性状进行了研究, 制备了单晶金刚石生长样品; 并通过光学显微镜、拉曼光谱对生长样品进行测试。模拟结果显示, 聚集条件下的核心电场和电子密度是普通条件下的3倍; 生长实验结果显示, 在常规的微波功率(3500 W)、生长气压(18 kPa)下得到的高能量密度(793.7 W/cm3)的等离子体与模型计算结果吻合。高能量密度生长条件并不会对生长形貌产生较大影响, 但加入一定量氮气能够显著改变生长形貌, 并对晶体质量产生影响。采用这种方法, 成功制备了高速率(97.5 μm/h)单晶金刚石。不同于通过增大生长气压来获得高能量密度的途径, 本研究在常规的生长气压和微波功率下也可以生长高能量密度单晶金刚石。

关键词: MPCVD单晶金刚石生长, 高能量密度, 高生长速率, 等离子体仿真

Abstract:

Single crystal diamond is a kind of crystal material with excellent performance, which has important application value in advanced scientific field. In the field of single crystal diamond growth by microwave plasma chemical vapor deposition (MPCVD), improvement of crystal growth rate is still a key challenge, although corrent high energy density plasma has been a ralatively effective method. In this work, a special plasma focusing structure was designed through magnetohydrodynamic (MHD) model simulation which then was used in the growth experiment based on the simulation. The plasma properties were studied by means of spectral analysis and plasma imaging, and late on single crystal diamond samples were synthesized. The simulation results show that the core electric field and electron density under focusing conditions were 2 times higher than those under normal conditions. The growth experiment results show that plasma with high energy density (793.7 W/cm3) is obtained under conventional microwave power (3500 W) and growth pressure (18 kPa), which is consistent with the model calculation results. We find that a certain amount of nitrogen instead of high energy density growth conditions can significantly change the growth morphology and affect the quality of the crystal. With those findings, we realize the growth rate of single crystal diamond up to 97.5 μm/h. Different from the way to obtain high energy density by increasing the growth pressure, single crystal diamond can be synthesized with high energy density under normal growth pressure and microwave power.

Key words: MPCVD single crystal diamond growth, high energy density, high growth rate, plasma simulation

中图分类号: