无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 413-420.DOI: 10.15541/jim20220712

• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇    下一篇

本征可拉伸阈值型忆阻器及其神经元仿生特性

田雨1,2(), 朱小健2(), 孙翠2, 叶晓羽2, 刘慧媛2, 李润伟2   

  1. 1.宁波大学 材料科学与化学工程学院, 宁波 315211
    2.中国科学院 宁波材料技术与工程研究所, 宁波 315201
  • 收稿日期:2022-11-28 修回日期:2022-12-17 出版日期:2023-04-20 网络出版日期:2022-12-28
  • 通讯作者: 朱小健, 研究员. E-mail: zhuxj@nimte.ac.cn
  • 作者简介:田雨(1997-), 男, 硕士研究生. E-mail: tianyu@nimte.ac.cn
  • 基金资助:
    国家自然科学基金(62174164);国家自然科学基金(61974179);国家自然科学基金(92064011);宁波市自然科学基金(202003N4029);中国科学院科研仪器设备研制项目(YJKYYQ20200030);中国科学院对外合作重点项目(174433KYSB20190038)

Intrinsically Stretchable Threshold Switching Memristor for Artificial Neuron Implementations

TIAN Yu1,2(), ZHU Xiaojian2(), SUN Cui2, YE Xiaoyu2, LIU Huiyuan2, LI Runwei2   

  1. 1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2022-11-28 Revised:2022-12-17 Published:2023-04-20 Online:2022-12-28
  • Contact: ZHU Xiaojian, professor. E-mail: zhuxj@nimte.ac.cn
  • About author:TIAN Yu (1997-), male, Master candidate. E-mail: tianyu@nimte.ac.cn
  • Supported by:
    National Natural Science Foundation of China(62174164);National Natural Science Foundation of China(61974179);National Natural Science Foundation of China(92064011);Ningbo Natural Science Foundation(202003N4029);Scientific Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20200030);External Cooperation Program of Chinese Academy of Sciences(174433KYSB20190038)

摘要:

研制具有生物神经元信息功能的柔性电子器件对于发展智能穿戴技术具有重要意义。传统阈值型忆阻器可模仿神经元信息整合功能, 但因缺乏本征柔韧性, 难以满足应用需求。本工作制备了一种基于本征可拉伸阈值型忆阻器的柔性人工神经元, 它由银纳米线-聚氨酯复合介质薄膜和液态金属电极构成。在外加电压下, 器件呈现良好的阈值电阻转变特性, 这归因于银纳米线间形成非连续银导电细丝的动态通断。该器件可模仿生物神经元的信息整合-发放及脉冲强度和脉冲间隔调制的尖峰放电功能。在20%拉伸应变下, 器件工作参数基本保持稳定, 性能未发生明显退化。本工作为发展可拉伸柔性人工神经元及下一代智能穿戴设备提供重要材料和技术参考。

关键词: 神经形态计算, 忆阻器, 阈值开关, 可拉伸, 人工神经元

Abstract:

The exploration of flexible electronic devices with information processing functions of biological neurons is of great significance for the development of intelligent wearable technologies. Due to lack of inherent mechanical flexibility, conventional threshold-switching memristor based on rigid materials that can implement the computing functions of biological neurons is difficult to fulfill the requirements for potential applications in the future. In this work, an intrinsically stretchable threshold-switching memristor was prepared by using silver nanowire-polyurethane composite as the dielectric layer and liquid metal as the electrodes, respectively. Under application of a sweeping voltage, the device exhibited reliable threshold switching characteristics, which was switched from the high resistance state (HRS) to the low resistance state (LRS) during device programming and spontaneously relaxed to the HRS upon voltage application. Further analysis shows that the underlying mechanism can be attributed to the dynamic formation and rupture of discontinuous silver conductive filaments formed between silver nanowires. In the pulse programming mode, memristor device is able to emulate the integration and firing characteristics of biological neurons, suggesting its great potential as an artificial neuron. Moreover, the pulse amplitude and pulse interval modulated neuronal spiking behaviors are successfully replicated using such devices. Under 20% tensile strain, the threshold-switching memristor shows negligible changes in the operating parameters during device switching and neuronal function implementations, suggesting its excellent mechanical flexibility and stability. This work provides important guidelines for the development of high-performance stretchable artificial neuronal devices and next-generation intelligent wearable systems.

Key words: neuromorphic computing, memristor, threshold switching, stretchable, artificial neuron

中图分类号: