无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 647-655.DOI: 10.15541/jim20220625

• 研究论文 • 上一篇    下一篇

金属镍铜负载钒氧化物的高效电解产氢性能

孙强强(), 陈子璇, 杨子玥, 王毅梦, 曹宝月()   

  1. 商洛学院 化学工程与现代材料学院, 陕西省尾矿资源综合利用重点实验室, 商洛市石墨烯技术与应用研究中心, 商洛 726000
  • 收稿日期:2022-10-24 修回日期:2022-12-25 出版日期:2022-12-28 网络出版日期:2022-12-28
  • 通讯作者: 曹宝月, 副教授. E-mail: 231052@slxy.edu.cn
  • 作者简介:孙强强(1985-), 男, 博士, 副教授. E-mail: sqq3c118@slxy.edu.cn
  • 基金资助:
    陕西省科协青年人才托举计划项目(20200613);商洛学院科研发展平台专项(22KYZX01);大学生创新创业训练计划项目(S202211396016)

Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production

SUN Qiangqiang(), CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue()   

  1. Research Centre of Grapheme Technology and Application, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
  • Received:2022-10-24 Revised:2022-12-25 Published:2022-12-28 Online:2022-12-28
  • Contact: CAO Baoyue, associate professor. E-mail: 231052@slxy.edu.cn
  • About author:SUN Qiangqiang (1985-), male, PhD, associate professor. E-mail: sqq3c118@slxy.edu.cn
  • Supported by:
    The Youth Talent Support Program of Shaanxi University Science and Technology Association(20200613);Scientific Research Development Platform Special Project of Shangluo University(22KYZX01);National College Student Innovation and Entrepreneurship Training Program(S202211396016)

摘要:

镍基电极材料是碱性电解水中最具工业应用前景的过渡金属催化剂, 而其缓慢的析氢反应动力学及低活失活问题仍亟待解决。本研究以泡沫镍(NF)为基底, 采用一步循环伏安法制备了主晶相为独立分相的多晶态金属镍铜合金、夹杂有少量非晶态V2O5相、具有三维多孔团簇结构的金属镍铜负载钒氧化物电催化剂(VOx-NiCu/NF)。纳米颗粒、团簇交织形成的微米孔及泡沫镍的一级微孔共同构成了VOx-NiCu/NF的三级多孔微纳结构, 使其电催化活性面积增加了28倍, 并在析氢反应中表现出优异的催化性能。在碱性介质中, 获得-10 mA·cm-2的析氢电流密度, VOx-NiCu/NF需要的过电势(η10)仅为35 mV, 表现出类铂的催化活性, 具有优异的长效稳定性及强劲的耐用性。电极表面形成的多孔团簇结构, 显著增加了催化活性位点并为物质传递提供大量通道。镍铜合金及非晶态V2O5相, 在一定程度协同改善了材料的固有析氢活性。理想的组成及独特的结构特性提高了VOx-NiCu/NF的催化性能, 其中结构优势对其最优效能起主导作用。动力学分析发现, VOx-NiCu/NF在析氢过程遵循Volmer-Heyrovsky机理, 即表面活性氢原子的电化学脱附为电荷转移过程的决速步骤, 为后续深入研究催化机制奠定了基础。

关键词: 镍铜合金, 钒氧化物, 析氢反应, 团簇结构, 协同效应

Abstract:

Nickel-based electrocatalytic material is considered one of the cost-optimal transition metal catalysts in alkaline water electrolysis due to its accessible industrial-applicability. Nevertheless, slow hydrogen evolution kinetics and low activation are still the grand challenges. Herein, we report a three-dimentional porous cluster structure vanadium oxide implanting into nickel-copper alloy electrocatalyst with phase-separation metallic nickel and copper as the main crystal phase mixed up with amorphous vanadium oxide phase, which is fabricated in situ on nickel foam (NF) by one-step cyclic voltammetry. The tri-hierarchical porous micro-nano structure of VOx-NiCu/NF was constructed by nanoparticles of whichmicropores were created by clusters. This nickel foam micropores endows the target catalyst with a 28-fold increased electrochemically active surface area (ECSA), comparable to Pt-like catalytic activity towards hydrogen evolution reaction (HER). Encouragingly, VOx-NiCu/NF needs merely 35 mV (η10) to drive -10 mA·cm-2 towards HER in alkaline medium. In addition, the as-prepared VOx-NiCu/NF exhibits excellent long-time stability and durability. These data suggest that the formation of cluster structure, piled by nanoparticles, creates a large number of surface micropores, which greatly enhance the active sites and provide abundant material transfer channels for HER. Formation of NiCu alloy and amorphous V2O5 phase synergically boost the intrinsic HER activity to a certain extent. Simultaneously, the ideal composition and unique structural characteristics of VOx-NiCu/NF contribute to the superior catalytic performance with the structural advantage responsible for the predominant effect. On the basis of kinetic analysis, the HER at VOx-NiCu/NF proceed via a Volmer-Heyrovsky mechanism, where chemical desorption of hydrogen adsorbed is regarded as the rate-limiting step. Therefore, this study lays a foundation for promotion electrocatalytic hydrogen production.

Key words: nickel-copper alloy, vanadium oxide, hydrogen evolution reaction, cluster structure, synergistic effect

中图分类号: