无机材料学报 ›› 2023, Vol. 38 ›› Issue (2): 148-154.DOI: 10.15541/jim20220412
收稿日期:
2022-07-14
修回日期:
2022-09-05
出版日期:
2023-02-20
网络出版日期:
2022-11-20
作者简介:
张爱梅(1978-), 女, 教授. E-mail: amzhang2009@hhu.edu.cn
基金资助:
ZHANG Aimei(), ZHU Jiajia, FANG Tiancheng, PAN Xixi
Received:
2022-07-14
Revised:
2022-09-05
Published:
2023-02-20
Online:
2022-11-20
About author:
ZHANG Aimei (1978-), female, professor. E-mail: amzhang2009@hhu.edu.cn
Supported by:
摘要:
钙钛矿锰氧化物La1–xSrxMnO3 (LSMO)作为一种代表性庞磁阻材料, 在磁传感器等领域具有广阔的应用前景, 但在低磁场和室温下很难获得显著的庞磁阻效应。 为提高LSMO磁电阻效应和转变温度, 本研究采用传统固相反应法制备了La0.8Sr0.2Mn1–xAlxO3 (0≤x≤0.25)(LSMAO)多晶样品, 并系统分析了Al3+掺杂对LSMO电输运性质和磁电阻效应的影响。X射线衍射(XRD)图谱表明LSMAO样品具有单一的菱方结构, 属于
中图分类号:
张爱梅, 朱佳佳, 方天诚, 潘茜茜. Al3+掺杂对La0.8Sr0.2Mn1-xAlxO3电输运性能的影响[J]. 无机材料学报, 2023, 38(2): 148-154.
ZHANG Aimei, ZHU Jiajia, FANG Tiancheng, PAN Xixi. Effects of Al3+ Doping on the Structure and Electrical Transport Property of La0.8Sr0.2Mn1-xAlxO3[J]. Journal of Inorganic Materials, 2023, 38(2): 148-154.
图1 La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.25) 的XRD图谱和晶体结构
Fig. 1 XRD patterns and crystal structure of La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.25) (a) XRD patterns of La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.25); (b) Representatively-refined XRD pattern of La0.8Sr0.2Mn0.25Al0.75O3; (c) Crystal structure of LSMAO perovskite with red balls representing O, green balls representing La, and randomly distributed Mn and Al ions in the middle of the oxygen cage; Colorful figures are available on website
x | a/nm | b/nm | c/nm | Volume/nm3 | Rwp | Rp | Mn-O-Mn/(°) | Mn-O/nm | tG | Grain size/nm |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5526 | 0.5526 | 1.3365 | 0.35355 | 0.1589 | 0.1116 | 164.121 | 0.19646 | 0.97093 | 42.3 |
0.05 | 0.5521 | 0.5521 | 1.3357 | 0.35262 | 0.1754 | 0.1259 | 164.123 | 0.19628 | 0.97358 | 43.9 |
0.10 | 0.5509 | 0.5509 | 1.3339 | 0.35068 | 0.1764 | 0.1254 | 164.127 | 0.19592 | 0.97624 | 44.2 |
0.15 | 0.5504 | 0.5504 | 1.3334 | 0.34993 | 0.1692 | 0.1205 | 164.129 | 0.19578 | 0.97892 | 45.7 |
0.20 | 0.5492 | 0.5492 | 1.3319 | 0.34801 | 0.0858 | 0.0591 | 164.135 | 0.19542 | 0.98161 | 57.9 |
0.25 | 0.5481 | 0.5481 | 1.3304 | 0.34619 | 0.0759 | 0.0535 | 164.140 | 0.19508 | 0.98431 | 59.2 |
表1 XRD Rietveld精修的La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.25)晶格常数及精修数据
Table 1 Lattice constants and refined data of La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.25) obtained by XRD Rietveld refinement
x | a/nm | b/nm | c/nm | Volume/nm3 | Rwp | Rp | Mn-O-Mn/(°) | Mn-O/nm | tG | Grain size/nm |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5526 | 0.5526 | 1.3365 | 0.35355 | 0.1589 | 0.1116 | 164.121 | 0.19646 | 0.97093 | 42.3 |
0.05 | 0.5521 | 0.5521 | 1.3357 | 0.35262 | 0.1754 | 0.1259 | 164.123 | 0.19628 | 0.97358 | 43.9 |
0.10 | 0.5509 | 0.5509 | 1.3339 | 0.35068 | 0.1764 | 0.1254 | 164.127 | 0.19592 | 0.97624 | 44.2 |
0.15 | 0.5504 | 0.5504 | 1.3334 | 0.34993 | 0.1692 | 0.1205 | 164.129 | 0.19578 | 0.97892 | 45.7 |
0.20 | 0.5492 | 0.5492 | 1.3319 | 0.34801 | 0.0858 | 0.0591 | 164.135 | 0.19542 | 0.98161 | 57.9 |
0.25 | 0.5481 | 0.5481 | 1.3304 | 0.34619 | 0.0759 | 0.0535 | 164.140 | 0.19508 | 0.98431 | 59.2 |
图2 在外加磁场0和3 T下La0.8Sr0.2Mn1-xAlxO3的电阻率-温度曲线
Fig. 2 Resistivity-temperature curves of La0.8Sr0.2Mn1-xAlxO3 under the applied magnetic field of 0 and 3 T (a) x=0; (b) x=0.05; (c) x=0.10; (d) x=0.15; (e) x=0.20; (f) x=0.25
图3 La0.8Sr0.2Mn1-xAlxO3 (0.1≤x≤0.25)在外加磁场0和3 T下高温区(lnρ~T-0.25)曲线的模型拟合
Fig. 3 Model fittings of the curves of La0.8Sr0.2Mn1-xAlxO3 (0.1≤x≤0.25) in the high temperature region (lnρ~T-0.25) under the applied magnetic field of 0 and 3 T (a-b) Small polaron hopping model; (c-h) Variable range hopping model
Al contents (Magnetic field) | ρ0/(×10-2, Ω·m) | ρ2/(×10-7, Ω·m·K-2) | ρ4.5/(×10-13, Ω·m·K-4.5) | ρe/(×10-2, Ω·m·K-0.5) | ρp/(×10-14, Ω·m·K-5) | ρs/(×10-2, Ω·m) |
---|---|---|---|---|---|---|
x=0.00 (0 T) | -1.794 | 3.485 | -5.435 | -0.3133 | 2.589 | -1.011 |
x=0.00 (3 T) | -0.3763 | 1.012 | -1.478 | -0.07327 | 0.7181 | -0.2298 |
x=0.05 (0 T) | -19.46 | 48.02 | -111.6 | -3.747 | 56.81 | -11.5 |
x=0.05 (3 T) | -9.097 | 20.86 | -42.3 | -1.695 | 21.06 | -5.301 |
表2 La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.05)的低温金属相拟合结果
Table 2 Fitting results of low temperature metal phase for La0.8Sr0.2Mn1-xAlxO3 (0≤x≤0.05)
Al contents (Magnetic field) | ρ0/(×10-2, Ω·m) | ρ2/(×10-7, Ω·m·K-2) | ρ4.5/(×10-13, Ω·m·K-4.5) | ρe/(×10-2, Ω·m·K-0.5) | ρp/(×10-14, Ω·m·K-5) | ρs/(×10-2, Ω·m) |
---|---|---|---|---|---|---|
x=0.00 (0 T) | -1.794 | 3.485 | -5.435 | -0.3133 | 2.589 | -1.011 |
x=0.00 (3 T) | -0.3763 | 1.012 | -1.478 | -0.07327 | 0.7181 | -0.2298 |
x=0.05 (0 T) | -19.46 | 48.02 | -111.6 | -3.747 | 56.81 | -11.5 |
x=0.05 (3 T) | -9.097 | 20.86 | -42.3 | -1.695 | 21.06 | -5.301 |
Al contents (magnetic field) | Temperature region/K | θD/K | υph/(×1013, Hz) | ρα/(×10−5, Ω·m·K-1) | Ea/meV | R2 |
---|---|---|---|---|---|---|
x=0.10 (0 T) | [259.606, 300] | 527.2478 | 1.10 | 0.374 | 102.73 | 0.99923 |
x=0.10 (3 T) | [277.554, 300] | 563.2365 | 1.17 | 0.812 | 81.64 | 0.99623 |
表3 La0.8Sr0.2Mn0.9Al0.1O3的小极化子模型(SPH)拟合参数
Table 3 Fitting parameters of small polaron hopping model for La0.8Sr0.2Mn0.9Al0.1O3
Al contents (magnetic field) | Temperature region/K | θD/K | υph/(×1013, Hz) | ρα/(×10−5, Ω·m·K-1) | Ea/meV | R2 |
---|---|---|---|---|---|---|
x=0.10 (0 T) | [259.606, 300] | 527.2478 | 1.10 | 0.374 | 102.73 | 0.99923 |
x=0.10 (3 T) | [277.554, 300] | 563.2365 | 1.17 | 0.812 | 81.64 | 0.99623 |
Al contents (Magnetic field) | Temperature region/K | R2 | T0/(×106, K) | ρ0/(×10-6, Ω·m) | N(E)/( ×1014, nm-3·meV-1) | Rh(75 K)/nm | Eh(75 K)/meV |
---|---|---|---|---|---|---|---|
x=0.15 (0 T) | [225.64, 300] | 0.9994 | 13.39103 | 0.03897 | 2.21487 | 0.41377 | 94.025 |
x=0.15 (3 T) | [259.65, 300] | 0.9978 | 6.789 | 0.38214 | 4.36875 | 0.34914 | 79.34 |
x=0.20 (0 T) | [132.31, 300] | 0.9993 | 3.75859 | 275.281 | 7.8911 | 0.535565 | 121.702 |
x=0.20 (3 T) | [155.4, 300] | 0.99911 | 2.14391 | 4292.18 | 13.8343 | 0.465433 | 105.765 |
x=0.25 (0 T) | [50, 300] | 0.99814 | 12.56367 | 0.01927 | 2.36073 | 0.724161 | 164.558 |
x=0.25 (3 T) | [50, 300] | 0.99664 | 7.91716 | 0.35257 | 3.74622 | 0.645206 | 146.616 |
表4 La0.8Sr0.2Mn1-xAlxO3 (0.15≤x≤0.25)的变程跳跃模型(VRH)拟合参数
Table 4 Fitting parameters of variable range hopping model for La0.8Sr0.2Mn1-xAlxO3 (0.15≤x≤0.25)
Al contents (Magnetic field) | Temperature region/K | R2 | T0/(×106, K) | ρ0/(×10-6, Ω·m) | N(E)/( ×1014, nm-3·meV-1) | Rh(75 K)/nm | Eh(75 K)/meV |
---|---|---|---|---|---|---|---|
x=0.15 (0 T) | [225.64, 300] | 0.9994 | 13.39103 | 0.03897 | 2.21487 | 0.41377 | 94.025 |
x=0.15 (3 T) | [259.65, 300] | 0.9978 | 6.789 | 0.38214 | 4.36875 | 0.34914 | 79.34 |
x=0.20 (0 T) | [132.31, 300] | 0.9993 | 3.75859 | 275.281 | 7.8911 | 0.535565 | 121.702 |
x=0.20 (3 T) | [155.4, 300] | 0.99911 | 2.14391 | 4292.18 | 13.8343 | 0.465433 | 105.765 |
x=0.25 (0 T) | [50, 300] | 0.99814 | 12.56367 | 0.01927 | 2.36073 | 0.724161 | 164.558 |
x=0.25 (3 T) | [50, 300] | 0.99664 | 7.91716 | 0.35257 | 3.74622 | 0.645206 | 146.616 |
[1] |
DHAHRI N, DHAHRI A, CHERIF K, et al. Effect of Co substitution on magnetocaloric effect in La0.67Pb0.33Mn1-xCoxO3 (0.15≤x≤0.3). Journal of Alloys and Compounds, 2010, 507(2): 405.
DOI URL |
[2] |
AL-YAHMADI I, GISMELSEED A, AL MA’MARI F, et al. Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A=Co, Ni, Zn) perovskite manganites. Journal of Alloys and Compounds, 2021, 875: 159977.
DOI URL |
[3] |
BALLY M, KHAN F. Structural, dielectric and magnetic properties of La0.55Sr0.45MnO3 polycrystalline perovskite. Journal of Magnetism and Magnetic Materials, 2020, 509: 166897.
DOI URL |
[4] |
HAGHIRI-GOSNET A, RENARD J. CMR manganites: physics, thin films and devices. Journal of Physics D: Applied Physics, 2003, 36(8): R127.
DOI URL |
[5] | THANH T D, PHAN T, THANH P Q, et al. Electrical and magnetotransport properties of La0.7Ca0.3Mn1-xCoxO3. IEEE Transactions on Magnetics, 2014, 50(6): 1. |
[6] |
LIU H, WANG C, WU L, et al. Effect of Ho-doping on structural, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by plasma-activated sintering. Journal of Materials Science, 2018, 53(4): 2375.
DOI URL |
[7] |
NGAN L, DANG N, PHUC N, et al. Magnetic and transport behaviors of Co substitution in La0.7Sr0.3MnO3 perovskite. Journal of Alloys and Compounds, 2022, 911: 164967.
DOI URL |
[8] |
CHU K L, LI H J, PU X R, et al. Influence of Ag doping on room-temperature TCR of La0.67Sr0.33-xAgxMnO3 polycrystalline ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31(15): 12389.
DOI URL |
[9] |
DHAHRI A, DHAHRI J, HCINI S, et al. Influence of Al substitution on physical properties of Pr0.67Sr0.33Mn1-xAlxO3 manganites. Applied Physics A, 2015, 120(1): 247.
DOI URL |
[10] |
ZAIDI N, ELABASSI M, SELMI M, et al. Structural characterization and magnetic interactions of La0.7Sr0.25Na0.05Mn1-xAlxO3. Journal of Superconductivity and Novel Magnetism, 2020, 33(8): 2257.
DOI URL |
[11] |
ZHAO S, YUE X, LIU X. Tuning room temperature Tpand MR of La1-y(Cay-xSrx)MnO3 polycrystalline ceramics by Sr doping. Ceramics International, 2017, 43(5): 4594.
DOI URL |
[12] |
LI L, ZHANG H, LIU X, et al. Structure and electromagnetic properties of La0.7Ca0.3-xKxMnO3 polycrystalline ceramics. Ceramics International, 2019, 45: 10558.
DOI URL |
[13] |
RAMIREZ A. Colossal magnetoresistance. Journal of Physics: Condensed Matter, 1997, 9(39): 8171-8199.
DOI URL |
[14] |
THANH T, NGUYEN L, MANH D, et al. Structural, magnetic and magnetotransport behavior of La0.7SrxCa0.3-xMnO3 compounds. Physica B: Condensed Matter, 2012, 407(1): 145.
DOI URL |
[15] |
SCHIFFER P, RAMIREZ A, BAO W, et al. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Physical Review Letters, 1995, 75(18): 3336.
PMID |
[16] |
YUE X, ZHAN Y, LIU X, et al. Enhanced electrical properties of La0.7(Ca0.2Sr0.1)MnO3 polycrystalline composites with Ag addition. Journal of Low Temperature Physics, 2015, 180(5): 356.
DOI URL |
[17] |
BANERJEE A, PAL S, ROZENBERG E, et al. Adiabatic and non-adiabatic small-polaron hopping conduction in La1-xPbxMnO3+δ (0≤x≤0.5)-type oxides above the metal-semiconductor transition. Journal of Physics: Condensed Matter, 2001, 13(42): 9489.
DOI URL |
[18] |
YIN X, LIU X, YAN Y, et al. Preparation of La0.67Ca0.33MnO3: Agx polycrystalline by Sol-Gel method. Journal of Sol-Gel Science and Technology, 2014, 70(3): 361-365.
DOI URL |
[19] |
JUNG W H. Evaluation of Mott’s parameters for hopping conduction in La0.67Ca0.33MnO3above TC. Journal of Materials Science Letters, 1998, 17(15): 1317.
DOI URL |
[1] | 王慧, 张淑娟, 陈亭伟, 张传林, 罗豪甦, 郑仁奎. PdSe2半导体薄膜的真空硒化法制备研究[J]. 无机材料学报, 2021, 36(7): 779-784. |
[2] | 李鹏, 聂晓蕾, 田烨, 方文兵, 魏平, 朱婉婷, 孙志刚, 张清杰, 赵文俞. Bi0.5Sb1.5Te3/环氧树脂柔性复合热电厚膜的制备及其面内制冷性能[J]. 无机材料学报, 2019, 34(6): 679-684. |
[3] | 赵伟康, 张忻, 冯琦, 赵吉平, 刘洪亮, 李凡, 肖怡新, 刘燕琴, 张久兴. Sr掺杂对12CaO·7Al2O3电子化合物电输运及发射性能的影响[J]. 无机材料学报, 2019, 34(5): 521-528. |
[4] | 骆军, 何世洋, 李志立, 李永博, 王风, 张继业. 热电材料高通量实验制备与表征方法[J]. 无机材料学报, 2019, 34(3): 247-259. |
[5] | 段天赐, 王好文, 王伟, 裴玲, 胡妮. A位La掺杂的单晶化合物Sr2IrO4电输运特性[J]. 无机材料学报, 2018, 33(9): 1001-1005. |
[6] | 朱明康, 董显林, 陈 莹, 丁国际, 王根水. 残余应力对SrRuO3薄膜磁学及电输运性能的影响[J]. 无机材料学报, 2017, 32(1): 75-80. |
[7] | 卢晓羽, 贾 楠, 方必军, 杨昭荣, 张裕恒. 巨磁电阻材料A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)的输运行为及磁性能研究[J]. 无机材料学报, 2016, 31(7): 699-704. |
[8] | 张媛媛, 唐晓东, 陈莹, 王根水, 董显林. La0.7Ca0.3-xSrxMnO3薄膜的电输运特性研究[J]. 无机材料学报, 2016, 31(3): 274-278. |
[9] | 别业广, 胡 妮, 刘丰铭, 段天赐, 裴 玲, 邓 罡. La0.4Ca0.6Mn0.98Ru0.02O3中的电致电阻效应研究[J]. 无机材料学报, 2016, 31(11): 1255-1257. |
[10] | 金克新,赵省贵,谭兴毅,陈长乐. La2/3Sr1/3MnO3/ZnO混合物薄膜的磁电阻和伏安特性研究[J]. 无机材料学报, 2009, 24(3): 591-594. |
[11] | 李鸿,张明玉,蔡之让,郭焕银,彭振生,严国清. La0.7-xDyxSr0.3MnO3体系的输运行为研究[J]. 无机材料学报, 2005, 20(4): 981-987. |
[12] | 李合琴,何晓雄,方前锋. 用内耗技术研究La0.7Pb0.3MnO3巨磁电阻材料[J]. 无机材料学报, 2003, 18(6): 1372-1376. |
[13] | 彭刚,袁松柳,金嗣昭. La2/3(Ca,Ba)1/3MnO3系统的顺磁共振研究[J]. 无机材料学报, 2003, 18(1): 169-174. |
[14] | 彭子龙,李佐宜,胡强,杨晓非. (Ni0.81Fe0.19)0.66Cr0.34/Ni0.81Fe0.19薄膜的各向异性磁电阻效应及尺寸效应[J]. 无机材料学报, 2002, 17(2): 321-325. |
[15] | 姜勇,李广,曾祥勇,汤萍,孙霞,黄真,袁松柳. La0.5Ca0.5MnO3中Ca位上Ba掺杂效应研究[J]. 无机材料学报, 2000, 15(3): 531-535. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||