无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 399-405.DOI: 10.15541/jim20220519

• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇    下一篇

基于氧化物基电解质栅控晶体管突触的关联学习

方仁瑞1,2(), 任宽1, 郭泽钰1,2, 徐晗1,2, 张握瑜1,2, 王菲1,2, 张培文1,2, 李悦1,2, 尚大山1,2()   

  1. 1.中国科学院 微电子研究所, 微电子器件与集成技术重点实验室, 北京 100029
    2.中国科学院大学, 北京 100049
  • 收稿日期:2022-09-04 修回日期:2022-09-30 出版日期:2023-04-20 网络出版日期:2022-10-28
  • 通讯作者: 尚大山, 研究员. E-mail: shangdashan@ime.ac.cn
  • 作者简介:方仁瑞(1994-), 男, 博士研究生. E-mail: fangrenrui@ime.ac.cn
  • 基金资助:
    国家重点基础研究发展计划(2018YFA0701500);国家自然科学基金(61874138)

Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses

FANG Renrui1,2(), REN Kuan1, GUO Zeyu1,2, XU Han1,2, ZHANG Woyu1,2, WANG Fei1,2, ZHANG Peiwen1,2, LI Yue1,2, SHANG Dashan1,2()   

  1. 1. Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-09-04 Revised:2022-09-30 Published:2023-04-20 Online:2022-10-28
  • Contact: SHANG Dashan, professor, E-mail: shangdashan@ime.ac.cn
  • About author:FANG Renrui (1994-), male, PhD candidate. E-mail: fangrenrui@ime.ac.cn
  • Supported by:
    National Key Basic Research Development Program of China(2018YFA0701500);National Natural Science Foundation of China(61874138)

摘要:

电解质栅控晶体管(Electrolyte-gated transistors, EGTs)的沟道电导连续可调特性使其在构建神经形态计算系统中具有巨大应用潜力。本工作以非晶态Nb2O5作为沟道材料, LixSiO2作为栅电解质材料, 制备了一种具备低沟道电导(~120 nS)的EGT器件。该器件利用Li+嵌入/脱出Nb2O5晶格导致的沟道电导连续可逆变化, 模拟了神经突触的短程可塑性(Short-term plasticity, STP)、长程可塑性(Long-term plasticity, LTP)以及STP向LTP的转变等功能。基于这种EGT突触特性, 本工作设计了关联学习电路, 实现了突触权重的负反馈调节, 并模拟了“巴普洛夫的狗”经典条件反射行为。这些结果展现出EGT作为神经突触器件的巨大潜力, 为实现神经形态计算硬件提供了器件参考。

关键词: 电解质栅控晶体管, 神经突触, 突触可塑性, 关联学习

Abstract:

The analog channel conductance modulation of electrolyte-gated transistors (EGTs) is a desirable property for the emulation of synaptic weight modulation and thus gives them great potential in neuromorphic computing systems. In this work, an all-solid-state electrochemical EGT was introduced with a low channel conductance (~120 nS) using amorphous Nb2O5 and Li-doped SiO2 (LixSiO2) as the channel and gate electrolyte materials, respectively. By adjusting the applied gate voltage pulse parameters, the reversable and nonvolatile modulation of channel conductance were achieved, which was ascribed to reversible intercalation/deintercalation of Li+ ions into/from the Nb2O5 lattice. Essential functionalities of synapses, such as the short-term plasticity (STP), long-term plasticity (LTP), and transformation from STP to LTP, were simulated successfully by conductive channel modulation of the EGTs. Based on these characteristics, a simple associative learning circuit was designed by parallel a resistor between the gate and the source terminals. The Pavlovian dog classical conditioning behavior was simulated based on associative learning circuit, where the resistor represented the unconditioned synapse and shared the gate voltage with EGT according to the proportion of its resistance, and the resistance between gate and source for negative feedback regulation of synaptic weights. These results demonstrate the potential of EGT for artificial synaptic devices and provide an insight into hardware implementation of neuromorphic computing systems.

Key words: electrolyte-gated transistor, synapse, synaptic plasticity, associative learning

中图分类号: