无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 322-328.DOI: 10.15541/jim20220353
杨晓明1(), 蓝江河2,3(), 魏占涛3, 苏榕冰1, 李阳3, 王祖建1, 刘颖1, 何超1, 龙西法1()
收稿日期:
2022-06-24
修回日期:
2022-08-14
出版日期:
2022-10-25
网络出版日期:
2022-10-25
通讯作者:
蓝江河, 高级工程师. E-mail: lanjh418915@sina.com;作者简介:
杨晓明(1990-), 男, 副研究员. E-mail: xmyang@fjirsm.ac.cn
YANG Xiaoming1(), LAN Jianghe2,3(), WEI Zhantao3, SU Rongbing1, LI Yang3, WANG Zujian1, LIU Ying1, HE Chao1, LONG Xifa1()
Received:
2022-06-24
Revised:
2022-08-14
Published:
2022-10-25
Online:
2022-10-25
Contact:
LAN Jianghe, senior engineer. E-mail: lanjh418915@sina.com;About author:
YANG Xiaoming (1990-), male, associate professor. E-mail: xmyang@fjirsm.ac.cn
Supported by:
摘要:
钇铁石榴石(Y3Fe5O12, YIG)晶体具有优异的磁学和磁光性质, 在微波和磁光器件中有着广泛的应用。目前商用的磁光材料是采用液相外延技术在Gd3Ga5O12(GGG)衬底上沉积的YIG单晶薄膜。本研究以无铅B2O3-BaF2为复合助熔剂, 采用顶部籽晶法技术(TSSG)生长YIG单晶材料, YIG晶体尺寸和重量分别可达43 mm×46 mm×11 mm和60 g。该晶体具有较窄的铁磁共振线宽(0.679 Oe)、高透明度(75%)和法拉第旋转角(200 (°)·cm-1@1310 nm, 160 (°)·cm-1@1550 nm)等优异的综合性能, 是微波和磁光器件的良好候选材料。更为重要的是, 这种生长技术非常适合大尺寸YIG单晶或稀土掺杂YIG单晶, 结合定向籽晶生长和提升工艺, 可以显著降低生产成本。
中图分类号:
杨晓明, 蓝江河, 魏占涛, 苏榕冰, 李阳, 王祖建, 刘颖, 何超, 龙西法. 顶部籽晶法生长大尺寸、高品质钇铁石榴石晶体[J]. 无机材料学报, 2023, 38(3): 322-328.
YANG Xiaoming, LAN Jianghe, WEI Zhantao, SU Rongbing, LI Yang, WANG Zujian, LIU Ying, HE Chao, LONG Xifa. High Quality and Large Size Yttrium Iron Garnet Crystal Grown by Top Seeded Solution Growth Technique[J]. Journal of Inorganic Materials, 2023, 38(3): 322-328.
Fig. 2 XRD patterns and garnet structure of YIG crystal (a) XRD patterns and standard diffraction card; (b) Garnet structure; (c) Positions and sublattice structure of positive ions; (d) Oxygen coordination of positive ions
Fig. 3 Magnetic properties of YIG crystal (a) Enlarged M-H curve in the magnetic field of -1000-1000 Oe; (b) M-H curve at room temperature; (c) Temperature-dependent magnetization for an applied magnetic field of 1000 Oe (1 emu=10-3 A·m-2, 1 Oe=250/π A·m-1)
Fig. 4 Dielectric properties and FMR linewidth of YIG crystal (a, b) Temperature dependent dielectric constant (ε') and loss (tanδ) measured at the frequencies of 10 Hz-1 MHz; (c) FMR linewidth of the YIG spheres showed in the upright inset; (d) Average ΔH of the spheres (1 Oe=250/π A·m-1)Colorful figure is available on website
Fig. 6 X-ray photoelectron spectra and their Lorentzian-Gaussian dividing results of YIG crystal powders (a) Fe2p; (b) O1s; Colorful figure is available on website
[1] |
AUNG Y L, IKESUE A, WATANABE T, et al. Bi substituted YIG ceramics isolator for optical communication. Journal of Alloys and Compounds, 2019, 811: 152059.
DOI URL |
[2] |
GUAN P, DA ROS F, LILLIEHOLM M, et al. Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses. Nature Communications, 2018, 9: 1049.
DOI |
[3] |
KOBAYASHI N, IKEDA K, GU B, et al. Giant faraday rotation in metal-fluoride nanogranular films. Scientific Reports, 2018, 8: 4978.
DOI |
[4] |
GUDDALA S, KAWAGUCHI Y, KOMISSARENKO F, et al. All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. Nature Communications, 2021, 12(1): 3746.
DOI PMID |
[5] |
KOTOV V A, NUR-E-ALAM M, VASILIEV M, et al. Enhanced magneto-optic properties in sputtered Bi-containing ferrite garnet thin films fabricated using oxygen plasma treatment and metal oxide protective layers. Materials, 2020, 13(22): 5113.
DOI URL |
[6] |
LIN N X, LIN Y Z, WU G J, et al. Growth of high quality Si-based (Gd2Ce) (Fe4Ga)O12 thin film and prospects as a magnetic recording media. Journal of Alloys and Compounds, 2021, 875: 160086.
DOI URL |
[7] | WEI J W, HE H H. Computer aided design of magnetooptic properties for Bi-YIG film materials. Journal of Inorganic Materials, 1998, 13(2): 251. |
[8] |
ZOU S, HE X Y, ZENG X, et al. Microstructure and properties of Bi-doped yttrium iron garnet magneto-optical ceramics prepared by hot-pressing sintering process. Journal of Inorganic Materials, 2022, 37(7): 773.
DOI |
[9] |
NUR-E-ALAM M, VASILIEV M, BELOTELOV V, et al. Properties of ferrite garnet (Bi, Lu, Y)3(Fe, Ga)5O12 thin film materials prepared by RF magnetron sputtering. Nanomaterials, 2018, 8(5): 355.
DOI URL |
[10] | SORETO TEIXEIRA S, SALES A J M, GRATA M P F, et al. Yttrium ferrites with enhanced dielectric properties. Materials Science and Engineering B, 2018, 232: 41. |
[11] |
GOMI M, FURUYAMA H, ABE M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering. Journal of Applied Physics, 1991, 70(11): 7065.
DOI URL |
[12] |
MEI D J, CAO W Z, WANG N Z, et al. Breaking through the "3.0 eV wall" of energy band gap in mid-infrared nonlinear optical rare earth chalcogenides by charge-transfer engineering. Materials Horizons, 2021, 8(8): 2330.
DOI PMID |
[13] |
KURIMOTO M, MATSUBAYASHI S, ANDO K, et al. Temperature dependence of the Faraday effect in Rh4+-substituted magnetic garnets. Journal of Applied Physics, 1998, 83(9): 4897.
DOI URL |
[14] |
HIGUCHI S, FURUKAWA Y, TAKEKAWA S, et al. Magneto- optical properties of cerium-substituted yttrium iron garnet single crystals grown by traveling solvent floating zone method. Japanese Journal of Applied Physics, 1999, 38(7A): 4122-4126.
DOI |
[15] |
WANG H L, DU C H, Chris HAMMEL P, et al. Strain-tunable magnetocrystalline anisotropy in epitaxial Y3Fe5O12 thin films. Physical Review B, 2014, 89(13): 134404.
DOI URL |
[16] |
FU J B, HUA M X, WEN X, et al. Epitaxial growth of Y3Fe5O12 thin films with perpendicular magnetic anisotropy. Applied Physics Letters, 2017, 110(20): 202403.
DOI URL |
[17] |
KRYSZTOFIK A, OZOGLU S, MCMICHAEL R D, et al. Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate. Scientific Reports, 2021, 11(1): 14011.
DOI |
[18] |
ZHANG Y, WANG C T, LIANG X, et al. Enhanced magneto- optical effect in Y1.5Ce1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition. Journal of Alloys and Compounds, 2017, 703: 591.
DOI URL |
[19] |
KUCERA M, NITSCH K, STEPANKOVA H, et al. Growth and characterization of high purity epitaxial yttrium iron garnet films grown from BaO-B2O3-BaF2 flux. Physica Status Solidi A, 2003, 198(2): 407.
DOI URL |
[20] |
HIGUCHI S, FURUKAWA Y, TAKEKAWA S, et al. Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor. Sensors and Actuators A-Physical, 2003, 105(3): 293.
DOI URL |
[21] |
SEKIJIMA T, SATOH H, TAHARA K, et al. Growth of fibrous YIG single crystals by the self-adjusting solvent FZ method. Journal of Crystal Growth, 1998, 193(3): 446.
DOI URL |
[22] |
ISHIKAWA H, NAKAJIMA K, MACHIDA K, et al. Optical isolators using Bi-substituted rare-earth iron garnet films. Optical and Quantum Electronics, 1990, 22(6): 517.
DOI URL |
[23] |
IKESUE A, AUNG Y L, YASUHARA R, et al. Giant Faraday rotation in heavily Ce-doped YIG bulk ceramics. Journal of the European Ceramic Society, 2020, 40(15): 6073.
DOI URL |
[24] |
YE N, TU C Y, LONG X F, et al. Recent advances in crystal growth in china: laser, nonlinear optical, and ferroelectric crystals. Crystal Growth & Design, 2010, 10(11): 4672.
DOI URL |
[25] |
HE C, YANG X M, WANG Z J, et al. Relaxor-based ferroelectric single crystals grown by top-seeded solution growth method. Scientia Sinica Technologica, 2017, 47(11): 1126.
DOI URL |
[26] |
NIELSEN J W. Growth of magnetic garnet crystals. Journal of Applied Physics, 1958, 29(3): 390.
DOI URL |
[27] |
NIELSEN J W. Improved method for the growth of yttrium-iron and yttrium-gallium garnets. Journal of Applied Physics, 1960, 31(5): S51.
DOI URL |
[28] |
ANTONINI B, PAOLETTI A, PAROLI P. Isothermal growth of bulk YIG crystals by PbF2-B2O3 flux evaporation. Journal of Crystal Growth, 1981, 54(3): 586.
DOI URL |
[29] |
TOLKSDORF W. Growth of magnetic garnet single crystals from high temperature solution. Journal of Crystal Growth, 1977, 42: 275.
DOI URL |
[30] |
LINARES R C. Growth of yttrium-iron garnet from molten barium borate. Journal of the American Ceramic Society, 1962, 45(7): 307.
DOI URL |
[31] |
BANDYOPADHYAY T, SAHA P. Growth of yttrium iron garnet single crystals in Na2O-B2O3 flux system in air. Pramana, 1977, 9(2): 111.
DOI URL |
[32] |
NIKOLOV V, ILIEV K, PESHEV P. Stability region and growth conditions of Al-and Ga-substituted Y3Fe5O12 single crystals in solvents from the BaO-B2O3-BaF2 system. Materials Research Bulletin, 1982, 17(1): 47.
DOI URL |
[33] |
WENDE G, GORNERT P. Study of ACRT influence on crystal growth in high-temperature solutions by the "high-resolution induced striation method". Physica Status Solidi A, 1977, 41(1): 263.
DOI URL |
[34] |
NIKOLOV V, ILIEV K, PESHEV P. Effect of the hydrodynamics in high-temperature solutions on the quality of pure and substituted YIG single crystals grown by the TSSG method. Journal of Crystal Growth, 1986, 75(2): 269.
DOI URL |
[35] |
OKA K, UNOKI H. Y3Fe5O12 single-crystal growth by top seeded solution growth method. Journal of Applied Physics, 1984, 56(2): 436.
DOI URL |
[36] |
GUO X F, TAVAKOLI A H, SUTTON S, et al. Cerium substitution in yttrium iron garnet: valence state, structure, and energetics. Chemistry of Materials, 2014, 26(2): 1133.
DOI URL |
[37] |
GILLEO M A, GELLER S. Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3-xM2O3-(5-x) Fe2O3. Physical Review, 1958, 110(1): 73.
DOI URL |
[38] |
ENOCH R D. Magnetic domain studies on yttrium iron garnet using an infrared image converter. Contemporary Physics, 1975, 16(6): 561.
DOI URL |
[39] |
WU H R, HUANG F Z, XU T T, et al. Magnetic and magnetodielectric properties of Y3-xLaxFe5O12 ceramics. Journal of Applied Physics, 2015, 117(14): 144101.
DOI URL |
[40] |
LI H Y. Investigation of the structural, magnetic, impedance properties in samarium-doped yttrium iron garnet. Ceramics International, 2020, 46(10): 15408.
DOI URL |
[41] |
AAKANSHA, DEKA B, RAVI S. Magnetic and dielectric properties of Y3-xSmxFe5O12 (x=0 to 3.0). Journal of Superconductivity and Novel Magnetism, 2018, 31(7): 2121.
DOI URL |
[42] |
WU X B, WANG X F, LIU Y F, et al. Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics. Applied Physics Letters, 2009, 95(18): 182903.
DOI URL |
[43] |
SU J, LU X M, ZHANG C, et al. The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics. Journal of Materials Science, 2011, 46(10): 3488.
DOI URL |
[44] |
KUCERA M, NITSCH K, MARYSKO M, et al. Properties of epitaxial yttrium iron garnet films grown from BaO flux. Journal of Applied Physics, 2003, 93(10): 7510.
DOI URL |
[45] |
STRIATIONS I, GORNERT P, HERGT R. Preparation and crystal imperfections of yttrium-iron garnet single crystals grown in flux melts by slowly cooling and gradient transport I. Striations. Physica Status Solidi A, 1973, 20(2): 577.
DOI URL |
[46] |
FURUKAWA Y, FUJIYOSHI M, NITANDA F, et al. Valency control of iron in Y3Fe5O12 single crystals grown by the floating zone method. Journal of Crystal Growth, 1994, 143(3/4): 243.
DOI URL |
[47] |
MATSUMOTO S, SUZUKI S. Temperature-stable Faraday rotator material and its use in high-performance optical isolators. Applied Optics, 1986, 25(12): 1940.
PMID |
[48] |
ISHIKAWA H, NAKAJIMA K, MACHIDA K, et al. Optical isolators using Bi-substituted rare-earth iron garnet films. Optical and Quantum Electronics, 1990, 22(6): 517.
DOI URL |
[49] |
SEKIJIMA T, ITOH H, FUJII T, et al. Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fibrous yttrium iron garnet single crystals. Journal of Crystal Growth, 2001, 229(1): 409.
DOI URL |
[50] |
ANTONINI B, BLANK S L, LAGOMARSINO S, et al. Oxidizing effects of high temperature annealing in reducing atmosphere in Ca-doped YIG films. Journal of Magnetism and Magnetic Materials, 1980, 20(2): 216.
DOI URL |
[51] |
SHANNIGRAHI S R, HUANG A, CHANDRASEKHAR N, et al. Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Applied Physics Letters, 2007, 90(2): 022901.
DOI URL |
[52] |
LARSEN P K, METSELAA. R. Electric and dielectric properties of polycrystalline yttrium iron garnet: space-charge-limited currents in an inhomogeneous solid. Physical Review B, 1973, 8(5): 2016.
DOI URL |
[1] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[2] | 李一村, 刘雪冬, 郝晓斌, 代兵, 吕继磊, 朱嘉琦. 等离子体聚集装置下的高能量密度单晶金刚石快速生长研究[J]. 无机材料学报, 2023, 38(3): 303-309. |
[3] | 王志强, 吴济安, 陈昆峰, 薛冬峰. 大尺寸Er,Yb:YAG单晶的生长及其性能[J]. 无机材料学报, 2023, 38(3): 329-334. |
[4] | 邹顺, 何夕云, 曾霞, 仇萍荪, 凌亮, 孙大志. 掺铋钇铁石榴石磁光陶瓷的热压烧结及其性能研究[J]. 无机材料学报, 2022, 37(7): 773-779. |
[5] | 罗世淋, 张胜泰, 许保亮, 王凌坤, 段思逸菡, 丁艺, 赵倩, 段涛. YIG陶瓷对三价锕系模拟核素的固化行为研究[J]. 无机材料学报, 2022, 37(7): 757-763. |
[6] | 徐婷婷, 李云云, 王谦, 王京康, 任国浩, 孙大志, 吴云涛. 低成本溶液法制备厘米级Cs3Cu2I5单晶及其闪烁发光性能[J]. 无机材料学报, 2022, 37(10): 1129-1134. |
[7] | 戴云, 张中晗, 苏良碧, 李金, 龙勇, 丁雨憧, 武安华. 激光加热基座法生长高质量Yb3+掺杂Y3Al5O12单晶光纤[J]. 无机材料学报, 2021, 36(7): 761-765. |
[8] | 金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜. 坩埚下降法生长SnSe单晶及其力学性能研究[J]. 无机材料学报, 2021, 36(3): 313-318. |
[9] | 周雄, 方立志, 黄双武, 夏海平, 胡建旭, 章践立, 陈宝玖. Ce 3+/Yb 3+共掺LiLuF4单晶的紫外和近红外发光研究[J]. 无机材料学报, 2020, 35(5): 556-560. |
[10] | 王杨, 朱嘉琦, 扈忠波, 代兵. 铱衬底上异质外延单晶金刚石: 过程与机理[J]. 无机材料学报, 2019, 34(9): 909-917. |
[11] | 耿瑞文, 杨晓京, 谢启明, 李芮, 罗良. 基于划刻实验的单晶锗材料去除机理研究[J]. 无机材料学报, 2019, 34(8): 867-872. |
[12] | 王衍, 张久兴, 杨新宇, 赵晶晶, 宁舒羽, 李志. [100]、[110]、[111] CeB6单晶区熔生长与热电子发射性能研究[J]. 无机材料学报, 2018, 33(9): 981-986. |
[13] | 楚增勇, 李高林, 蒋振华, 王春华. 高质量钙钛矿单晶CH3NH3PbI3研究进展[J]. 无机材料学报, 2018, 33(10): 1035-1045. |
[14] | 王东, 贺剑桥, 赖晓芳, 黄荣铁, 施鹰, 徐丽, 黄富强. Na1.88Bi1.88S4和Na1.36Ca1.28Bi1.36S4单晶制备与结构及其光学性能表征[J]. 无机材料学报, 2018, 33(1): 100-106. |
[15] | 王 杨, 张 忻, 张久兴, 刘洪亮, 江 浩, 李录录. 低逸出功Ce1-xGdxB6单晶体的制备及其热发射性能[J]. 无机材料学报, 2016, 31(8): 797-801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||