无机材料学报 ›› 2022, Vol. 37 ›› Issue (10): 1123-1128.DOI: 10.15541/jim20210804

• 研究论文 • 上一篇    下一篇

Mg共掺杂Gd3(Al,Ga)5O12:Ce晶体快发光的作用机理

李铭清1,2(), 王林伟2, 丁栋舟2(), 冯鹤1   

  1. 1.上海大学 材料科学与工程学院, 上海 200444
    2.中国科学院 上海硅酸盐研究所, 上海 201899
  • 收稿日期:2021-12-29 修回日期:2022-02-16 出版日期:2022-10-20 网络出版日期:2022-07-08
  • 通讯作者: 丁栋舟, 正高级工程师. E-mail: dongzhou_ding@mail.sic.ac.cn
  • 作者简介:李铭清(1996-), 男, 硕士研究生. E-mail: mingqing114@foxmail.com
  • 基金资助:
    上海科学技术委员会项目(20511107400);国家自然科学基金(11475241)

Mechanism of Mg-codoping in Improving the Time Performance of Gd3(Al,Ga)5O12:Ce Scintillator

LI Mingqing1,2(), WANG Linwei2, DING Dongzhou2(), FENG He1   

  1. 1. School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • Received:2021-12-29 Revised:2022-02-16 Published:2022-10-20 Online:2022-07-08
  • Contact: DING Dongzhou, professor. E-mail: dongzhou_ding@mail.sic.ac.cn
  • About author:LI Mingqing (1996-), male, Master candidate. E-mail: mingqing114@foxmail.com
  • Supported by:
    Program of Shanghai Science and Technology Commission(20511107400);National Natural Science Foundation of China(11475241)

摘要:

Gd3(Al,Ga)5O12:Ce (GAGG:Ce)闪烁体综合性能优异, 应用前景广阔。为加快GAGG的发光衰减速度, 本研究通过提拉法生长了Mg共掺的Gd3(Al,Ga)5O12:Ce单晶。测试结果显示, 随着Mg2+掺杂浓度增加, 晶体的闪烁衰减速度加快, 光输出降低。传统解释认为, Mg2+通过电荷补偿作用将部分Ce3+转换成Ce4+, 后者的发光速度更快。本研究尝试从缺陷的形成与抑制的角度来讨论Mg改善GAGG:Ce晶体闪烁性能的作用机理。由于Ce的离子半径比Gd大, Ce离子掺入将导致发光中心CeGd附近的晶格发生畸变。畸变结果为近邻的八面体格位空间变大, 反位缺陷将更容易在这些变大的八面体格位形成。最终每个发光中心CeGd被四个反位缺陷GdAl包裹, 后者捕获载流子, 延缓从基体到发光中心的能量传递, 导致发光速度变慢。由于Mg的离子半径介于Gd和Al之间, MgAl将更容易在上述畸变的八面体格位形成, 这会抑制反位缺陷GdAl在发光中心CeGd附近形成(或富集), 最终降低(甚至消除)反位缺陷对发光中心的不良影响。XEL测试结果显示, 随着Mg掺杂量增大, 与反位缺陷相关的发射峰强度变弱, 这可以证明Mg对反位缺陷有抑制作用。

关键词: 闪烁体, GAGG:Ce, 反位缺陷, 衰减时间

Abstract:

With its excellent comprehensive performance, Gd3(Al,Ga)5O12:Ce (GAGG:Ce) scintillation crystal has broad application prospects. To accelerate the luminescence decay rate, Mg-codoped Gd3(Al,Ga)5O12:Ce single crystals were grown by Czochralski method. The test results show that with the concentration of Mg2+ increasing, the scintillation decay of the crystal accelerates and the light output decreases. The conventional interpretation suggests that Mg2+ could convert part of Ce3+ into Ce4+ through charge compensation, and the Ce4+ luminesces more quickly. This study tries to discuss the mechanism of Mg-codoping in GAGG:Ce crystals from the perspective of antisite defect. Since the ionic radius of Ce is larger than Gd, the doping of Ce ions leads to a distortion of the crystal lattice near the luminescence center CeGd. As a result of the distortion, the space of the adjacent octahedral sites become larger, and the antisite defects are more likely to form in these larger octahedral sites. Eventually each luminescence center CeGd is surrounded by four antisite defects GdAl, which would capture carriers and delay the energy transfer from the matrix to the luminescence center. As the ionic radius of Mg is between Gd and Al, MgAl also prefers to form in those distorted octahedral sites, which inhibits the formation (or enrichment) of the antisite defect GdAl near the luminescence center CeGd, and eventually reduces (or even eliminates) the adverse effects of the antisite defect on the luminescence center. XEL results show that with the increase of Mg concentration, the emission peak related to the antisite defect becomes weaker, which indicates that Mg could inhibit the formation of the antisite defect.

Key words: scintillator, GAGG:Ce, antisite defect, decay time

中图分类号: