无机材料学报 ›› 2022, Vol. 37 ›› Issue (8): 897-902.DOI: 10.15541/jim20210773
收稿日期:
2021-12-17
修回日期:
2022-04-07
出版日期:
2022-08-20
网络出版日期:
2022-04-07
通讯作者:
邵刚勤, 研究员. E-mail: gqshao@whut.edu.cn作者简介:
柳 琪(1993-), 男, 硕士. E-mail: liuqi19930126@163.com
LIU Qi(), ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin()
Received:
2021-12-17
Revised:
2022-04-07
Published:
2022-08-20
Online:
2022-04-07
Contact:
SHAO Gangqin, professor. E-mail: gqshao@whut.edu.cnAbout author:
LIU Qi (1993-), male, Master. E-mail: liuqi19930126@163.com
摘要:
稀土(RE)离子掺杂的钙钛矿型氟化物是可调谐光学材料的候选材料。本工作通过沉淀法合成了SrMgF4: xCe (x = 0, 0.007, 0.013和0.035)粉末。X射线衍射(XRD)分析表明所获得的荧光粉具有单斜超结构, 价态分析证实存在Ce3+/Ce4+混合价, 在紫外光区通过不同波长的激发光观察到两个荧光带B和C。当Ce3+多面体的对称性从高对称变为低对称时, 源于单斜超结构的晶体场导致能级发生强烈的改变。
中图分类号:
柳琪, 朱璨, 谢贵震, 王俊, 张东明, 邵刚勤. Ce掺杂SrMgF4超结构多晶体的吸收/光致发光光谱[J]. 无机材料学报, 2022, 37(8): 897-902.
LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure[J]. Journal of Inorganic Materials, 2022, 37(8): 897-902.
[1] |
OGORODNIKOV I N, PUSTOVAROV V A, ISAENKO L I, et al. Radiation-stimulated processes in SrMgF4 single crystals irradiated with fast electrons. Optical Materials, 2021, 118: 111234.
DOI URL |
[2] |
SINGH V S, BELSARE P D, MOHARIL S V. Wet chemical synthesis and study of luminescence in some Eu2+ activated AEMgF4 hosts. Physics of the Solid State, 2021, 62(12): 2318-2324.
DOI URL |
[3] | SOFRONOVA A Y, PUSTOVAROV V A, OGORODNIKOV I N. Radiation-induced defects in SrMgF4 single crystals irradiated by fast electrons. AIP Conference Proceedings, 2019, 2174: 020172. |
[4] |
GARCIA-CASTRO A C, IBARRA-HERNANDEZ W, BOUSQUET E, et al. Direct magnetization-polarization coupling in BaCuF4. Physical Review Letters, 2018, 121(11): 117601.
DOI URL |
[5] |
ATUCHIN V V, GOLOSHUMOVA A A, ISAENKO L I, et al. Crystal growth and electronic structure of low-temperature phase SrMgF4. Journal of Solid State Chemistry, 2016, 236: 89-93.
DOI URL |
[6] |
SCOTT J F. Searching for new ferroelectrics and multiferroics: a user’s point of view. npj Computational Materials, 2015, 1: 15006.
DOI URL |
[7] |
KUBEL F, HAGEMANN H, BILL H. Synthesis, crystal structures and spectroscopic investigations on samarium-doped mixed Ba1-δSrδMgF4 crystals. Materials Research Bulletin, 1997, 32(3): 263-269.
DOI URL |
[8] |
QUI B, BANKS E. The binary system SrF2-MgF2: phase diagram and study of growth of SrMgF4. Materials Research Bulletin, 1982, 17(9): 1185-1189.
DOI URL |
[9] |
BANKS E, NAKAJIMA S, SHONE M. New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions: photoluminescence and energy transfer. Journal of the Electrochemical Society, 1980, 127(10): 2234-2239.
DOI URL |
[10] |
EIBSCHÜTZ M, GUGGENHEIM H J. Antiferromagnetic-piezoelectric crystals: BaMF4(M = Mn, Fe, Co and Ni). Solid State Communications, 1968, 6(10): 737-739.
DOI URL |
[11] | ISHIZAWA N, SUDA K, ETSCHMANN B E, et al. Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystallographica Section C, 2001, 57(7): 784-786. |
[12] | ABRAHAMS S C. Structurally ferroelectric SrMgF4. Acta Crystallographica Section B, 2002, 58(1): 34-37. |
[13] |
MEL’NIKOVA S V, ISAENKO L I, GOLOSHUMOVA A A, et al. Investigation of the ferroelastic phase transition in the SrMgF4 pyroelectric crystal. Physics of the Solid State, 2014, 56(4): 757-760.
DOI URL |
[14] |
YELISSEYEV A P, JIANG X X, ISAENKO L I, et al. Structures and optical properties of two phases of SrMgF4. Physical Chemistry Chemical Physics, 2015, 17(1): 500-508.
DOI URL |
[15] |
YAMAGA M, KODAMA N. Vacuum ultraviolet spectroscopy of Ce3+-doped SrMgF4with superlattice structure. Journal of Physics- Condensed Matter, 2006, 18(26): 6033-6044.
DOI URL |
[16] |
HAGEMANN H, KUBEL F, BILL H, et al. 5D0→ 7F0 transitions of Sm2+ in SrMgF4: Sm2+ Journal of Alloys and Compounds, 2004, 374(1/2): 194-196.
DOI URL |
[17] |
CAO Z C, SHI C S, NI J Z. The valency and spectra of samarium ions in MF2-MgF2 (M=Ca, Sr, Ba). Journal of Luminescence, 1993, 55(5/6): 221-224.
DOI URL |
[18] |
TAMBOLI S, KADAM R M, DHOBLE S J. Photoluminescence and electron paramagnetic resonance properties of a potential phototherapic agent: MMgF4: Gd3+ (M = Ba, Sr) sub-microphosphors. Luminescence, 2016, 31(7): 1321-1328.
DOI URL |
[19] |
TIAN H Y, SHEN H Y, YANG Q H, et al. Synthesis, characterization and fluorescent properties of complex fluoride BaNiF4: Ce3+. Advanced Materials Research, 2012, 465: 56-60.
DOI URL |
[20] |
ZHU G X, XIE M B, YANG Q, et al. Hydrothermal synthesis and spectral properties of Ce3+ and Eu2+ ions doped KMgF3 phosphor. Optics and Laser Technology, 2016, 81: 162-167.
DOI URL |
[21] |
KORE B P, TAMBOLI S, DHOBLE N S, et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4. Materials Chemistry and Physics, 2017, 187: 233-244.
DOI URL |
[22] |
JANSSENS S, WILLIAMS G V M, CLARKE D. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles. Journal of Luminescence, 2013, 134: 277-283.
DOI URL |
[23] |
WATANABE S, ISHII T, FUJIMURA K, et al. First-principles relativistic calculation for 4f-5d transition energy of Ce3+ in various fluoride hosts. Journal of Solid State Chemistry, 2006, 179(8): 2438-2442.
DOI URL |
[24] |
YAMAGA M, HATTORI K, KODAMA N, et al. Superlattice structure of Ce3+-doped BaMgF4 fluoride crystals-X-ray diffraction, electron spin-resonance, and optical investigations. Journal of Physics-Condensed Matter, 2001, 13(48): 10811-10824.
DOI URL |
[25] |
KODAMA N, HOSHINO T, YAMAGA M, et al. Optical and structural studies on BaMgF4:Ce3+ crystals. Journal of Crystal Growth, 2001, 229(1): 492-496.
DOI URL |
[26] |
YAMAGA M, IMAI T, KODAMA N. Optical properties of two Ce3+-site centers in BaMgF4: Ce3+ crystals. Journal of Luminescence, 2000, 87-89: 992-994.
DOI URL |
[27] |
REY J M, BILL H, LOVY D, et al. Europium doped BaMgF4, an EPR and optical investigation. Journal of Alloys and Compounds, 1998, 268(1): 60-65.
DOI URL |
[28] | HAYASHI E, ITO K, YABASHI S, et al. Vacuum ultraviolet and ultraviolet spectroscopy of BaMgF4 co-doped with Ce3+ and Na+. Journal of Luminescence, 2006, 119: 69-74. |
[29] | HAYASHI E, ITO K, YABASHI S, et al. Ultraviolet irradiation effect of Ce3+-doped BaMgF4 crystals. Journal of Alloys and Compounds, 2006, 408: 883-885. |
[30] |
PUSTOVAROV V A, OGORODNIKOV I N, OMELKOV S I, et al. Electronic excitations and luminescence of SrMgF4 single crystals. Physics of the Solid State, 2014, 56(3): 456-467.
DOI URL |
[31] |
OGORODNIKOV I N, PUSTOVAROV V A, OMELKOV S I, et al. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals. Journal of Luminescence, 2014, 145: 872-879.
DOI URL |
[32] |
SCHOLZ G, BREITFELD S, KRAHL T, et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M = Ca, Sr, Ba). Solid State Sciences, 2015, 50: 32-41.
DOI URL |
[33] | LIU Q. Photoluminescence properties of rare-earth Ce-doped SrMgF4 powder prepared through a wet-chemical route. Wuhan: Master Thesis of Wuhan University of Technology, 2019. |
[34] | ZHANG D M, LIU Q, SHAO G Q, et al. The Ce-doped SrMgF4 fluorescent materials and their preparation method thereof. Chinese Invention Patent, Appl. No.201910294625.6, 2019-4-12. |
[35] |
VEITSCH C, KUBEL F, HAGEMANN H. Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Materials Research Bulletin, 2008, 43(1): 168-175.
DOI URL |
[36] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, A32: 751-767. |
[37] |
LIU Z P, XU Y, LI Z H, et al. Sulfur-resistant methanation over MoO3/CeO2-ZrO2 catalyst: influence of Ce-addition methods. Journal of Energy Chemistry, 2019, 28: 31-38.
DOI URL |
[38] | JEONG D W, NA H S, SHIM J O, et al. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catalysis Science & Technology, 2015, 5(7): 3706-3713. |
[39] |
SHAN W P, LIU F D, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115-116: 100-106.
DOI URL |
[40] | LOEF E V D, DORENBOS P, EIJK C W E, et al. Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high-energy- resolution scintillators. IEEE Transactions on Nuclear Science, 2002, 486(1): 254-258. |
[41] |
BLASSE G, BRIL A. Investigation of some Ce3+-activated phosphors. Journal of Chemical Physics, 1967, 47(47): 5139-5145.
DOI URL |
[42] |
DORENBOS P, PIERRON L, DINCA L, et al. 4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4. Journal of Physics Condensed Matter, 2003, 15(3): 511-520.
DOI URL |
[1] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[2] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[3] | 关旭峰, 李桂芳, 卫云鸽. Na1-xMxCaEu(WO4)3 (M=Li, K)红色荧光粉的微观结构与热猝灭特性研究[J]. 无机材料学报, 2022, 37(6): 676-682. |
[4] | 林啊鸣, 孙宜阳. Cs2SnI6低指数晶面稳定性的第一性原理计算研究[J]. 无机材料学报, 2022, 37(6): 691-696. |
[5] | 黄郅航, 滕官宏伟, 铁鹏, 范德松. 钙钛矿陶瓷薄膜的电致变色特性[J]. 无机材料学报, 2022, 37(6): 611-616. |
[6] | 焦博新, 刘兴翀, 全子威, 彭永姗, 周若男, 李海敏. L-精氨酸掺杂钙钛矿太阳电池性能研究[J]. 无机材料学报, 2022, 37(6): 669-675. |
[7] | 张国庆, 秦鹏, 黄富强. 空间限域铅离子与钙钛矿纳米晶间的可逆转换与信息存储应用[J]. 无机材料学报, 2022, 37(4): 445-451. |
[8] | 明月, 胡玥, 梅安意, 荣耀光, 韩宏伟. 醋酸铅添加剂在印刷钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2022, 37(2): 197-203. |
[9] | 王万海, 周杰, 唐卫华. 钙钛矿薄膜缺陷调控策略在太阳能电池中的应用[J]. 无机材料学报, 2022, 37(2): 129-139. |
[10] | 张枫娟, 韩博宁, 曾海波. 钙钛矿量子点光伏与荧光聚光电池: 现状与挑战[J]. 无机材料学报, 2022, 37(2): 117-128. |
[11] | 焦志翔, 贾帆豪, 王永晨, 陈建国, 任伟, 程晋荣. 基于机器学习的BiFeO3-PbTiO3-BaTiO3固溶体居里温度预测[J]. 无机材料学报, 2022, 37(12): 1321-1328. |
[12] | 徐婷婷, 李云云, 王谦, 王京康, 任国浩, 孙大志, 吴云涛. 低成本溶液法制备厘米级Cs3Cu2I5单晶及其闪烁发光性能[J]. 无机材料学报, 2022, 37(10): 1129-1134. |
[13] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[14] | 王潇, 朱智杰, 吴之怡, 张城城, 陈志杰, 肖梦琦, 李超然, 何乐. 钴等离激元超结构粉体催化剂的制备及其光热催化应用[J]. 无机材料学报, 2022, 37(1): 22-28. |
[15] | 杜傲宸, 杜琪源, 刘欣, 杨益民, 夏晨阳, 邹军, 李江. 高光效、大功率LEDs/LDs用Ce:YAG透明陶瓷[J]. 无机材料学报, 2021, 36(8): 883-892. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||