无机材料学报 ›› 2022, Vol. 37 ›› Issue (4): 361-375.DOI: 10.15541/jim20210299
所属专题: 【生物材料】肿瘤治疗; 【信息功能】Max层状材料、MXene及其他二维材料
• 综述 • 下一篇
白志强1,2(), 赵璐2, 白云峰2(), 冯锋1,2()
收稿日期:
2020-05-10
修回日期:
2021-06-27
出版日期:
2022-04-20
网络出版日期:
2021-11-08
通讯作者:
白云峰, 教授. E-mail: baiyunfeng1130@126.com;作者简介:
白志强(1987-), 男, 博士研究生. E-mail: baizq1987@126.com
基金资助:
BAI Zhiqiang1,2(), ZHAO Lu2, BAI Yunfeng2(), FENG Feng1,2()
Received:
2020-05-10
Revised:
2021-06-27
Published:
2022-04-20
Online:
2021-11-08
Contact:
BAI Yunfeng, professor. E-mail: baiyunfeng1130@126.com;About author:
BAI Zhiqiang (1987-), male, PhD candidate. E-mail: baizq1987@126.com
Supported by:
摘要:
二维过渡金属碳化物、氮化物或碳氮化物(MXenes)已成为二维材料中一个新兴的热点领域。MXenes材料具有优异的电子传递性能、出色的光热转换性能、较高的比表面积、良好的生物相容性和低毒性等特点, 在肿瘤诊疗中显示出良好的应用前景。本文简要总结了MXenes的制备方法, 包括氢氟酸法、氟盐法、熔融盐法、碱辅助水热法和化学气相沉积法, 及其稳定性、机械性质、光学性质和电学性质。重点综述了MXenes在肿瘤诊疗中的应用, 包括光热治疗、多模式联合治疗、构建MXenes表面介孔材料的联合治疗和MXenes主动靶向联合治疗, 以及建立MXenes诊断-治疗一体化平台。最后简要介绍了MXenes可能辅助肿瘤诊疗的其他特性及其应用, 并阐述了MXenes在肿瘤诊疗中存在的挑战以及未来发展前景。
中图分类号:
白志强, 赵璐, 白云峰, 冯锋. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4): 361-375.
BAI Zhiqiang, ZHAO Lu, BAI Yunfeng, FENG Feng. Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics[J]. Journal of Inorganic Materials, 2022, 37(4): 361-375.
图1 MXenes组成示意图[14]
Fig. 1 MXenes schematic composition[14] The first row shows structures of mono-transition metal (M) MXenes; The second row shows double-M solid solutions (SS), both of which contain two M molecules in the M layer being marked in green; The third row shows ordered double-M Mxenes, with one metal filling the outer M layer, and the other metal occupying the center M layer being marked in red; The fourth row shows an ordered divacancy structure, marked in pink. The schematic does not show the surface terminal Colorful figures are available on website
图2 MXenes制备方法示意图及化学气相沉积法制备的产物
Fig. 2 Schematic preparation methods for MXenes and products prepared by chemical vapor deposition (a) HF acid etching method[11]; (b) Molten salt method[19]; (c) Alkali assisted hydrothermal method[39]; (d) Optical images of ultra-thin α-Mo2C crystal ((d1): irregular shape, (d2): hexagonal shape)[41]
Preparation method | Advantages | Disadvantages | Ref. |
---|---|---|---|
HF acid etching | Simple | Using highly corrosive and harmful HF | [ |
Fluoride salt | Milder reaction conditions; Safer than that of HF acid etching | Difficult to prepare nitride MXenes | [ |
Molten salt | Preparing nitride MXenes and preparing MXenes through non-MAX materials | Requiring inert protective gas, under high temperature condition | [ |
Alkali assisted hydrothermal | Preparing MXenes without fluorine functional groups | High concentration of NaOH, requiring inert protective gas, under high temperature condition | [ |
Chemical vapor deposition | Precise controlling element composition, size and surface groups | Difficult to prepare large-sized MXenes | [ |
表1 MXenes的制备方法总结
Table 1 Summary of preparation methods of MXenes
Preparation method | Advantages | Disadvantages | Ref. |
---|---|---|---|
HF acid etching | Simple | Using highly corrosive and harmful HF | [ |
Fluoride salt | Milder reaction conditions; Safer than that of HF acid etching | Difficult to prepare nitride MXenes | [ |
Molten salt | Preparing nitride MXenes and preparing MXenes through non-MAX materials | Requiring inert protective gas, under high temperature condition | [ |
Alkali assisted hydrothermal | Preparing MXenes without fluorine functional groups | High concentration of NaOH, requiring inert protective gas, under high temperature condition | [ |
Chemical vapor deposition | Precise controlling element composition, size and surface groups | Difficult to prepare large-sized MXenes | [ |
图3 (a)Ti3C2纳米片对4T1肿瘤模型的荷瘤裸鼠PTT的示意图[30]和(b)Nb2C纳米片在NIR-I和NIR-II下进行体内PTT的示意图[28]
Fig. 3 (a) Schematic diagrams of Ti3C2 nanoparticles on PTT in 4T1 tumor bearing nude mice[30] and (b) Nb2C nanosheets for PTT in vivo under NIR-I and NIR-II[28]
MXenes material | First report time | NIR range | Wavelength /nm | Extinction coefficient/(L·g-1·cm-1) | Photothermal conversion efficiency/% | NIR power /(W·cm-2) | Irradiation time /min | Temperature range/℃ | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | NIR-I | 808 | 25.2 | - | 0.8 | 5 | 23.5-60.0 | |
Nb2C | 2017/10 | NIR-I | 808 | 37.6 | 36.5 | 1.5 | 5 | 25.0-60.0 | |
NIR-II | 1064 | 35.4 | 46.65 | 1.5 | 5 | 25.0-60.0 | |||
Ta4C3 | 2017/11 | NIR-I | 808 | 8.67 | 34.9 | 2.0 | 5 | 32.5-65.0 | [ |
Ti2C | 2019/01 | NIR-I | 808 | 7.39 | 87.1 | 2.0 | 2 | 25.5-93.8 | [ |
Mo2C | 2019/04 | NIR-I | 808 | 18.0 | 24.5 | 1.0 | 10 | 25.0-57.8 | [ |
NIR-II | 1064 | 12.3 | 43.3 | 1.0 | 10 | 25.0-62.3 | |||
V2C | 2020/01 | NIR-I | 808 | 38.3 | 48.5 | 0.48 | 10 | 24.0-57.9 | [ |
Ti2N | 2020/11 | NIR-I | 808 | 41.25 | 48.62 | 1.0 | 5 | 25.0-60.0 | [ |
NIR-II | 1064 | 34.92 | 45.51 | 1.0 | 5 | 25.0-60.0 |
表2 MXenes首次应用于肿瘤PTT的结果总结
Table 2 First application of MXenes in PTT on tumor
MXenes material | First report time | NIR range | Wavelength /nm | Extinction coefficient/(L·g-1·cm-1) | Photothermal conversion efficiency/% | NIR power /(W·cm-2) | Irradiation time /min | Temperature range/℃ | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | NIR-I | 808 | 25.2 | - | 0.8 | 5 | 23.5-60.0 | |
Nb2C | 2017/10 | NIR-I | 808 | 37.6 | 36.5 | 1.5 | 5 | 25.0-60.0 | |
NIR-II | 1064 | 35.4 | 46.65 | 1.5 | 5 | 25.0-60.0 | |||
Ta4C3 | 2017/11 | NIR-I | 808 | 8.67 | 34.9 | 2.0 | 5 | 32.5-65.0 | [ |
Ti2C | 2019/01 | NIR-I | 808 | 7.39 | 87.1 | 2.0 | 2 | 25.5-93.8 | [ |
Mo2C | 2019/04 | NIR-I | 808 | 18.0 | 24.5 | 1.0 | 10 | 25.0-57.8 | [ |
NIR-II | 1064 | 12.3 | 43.3 | 1.0 | 10 | 25.0-62.3 | |||
V2C | 2020/01 | NIR-I | 808 | 38.3 | 48.5 | 0.48 | 10 | 24.0-57.9 | [ |
Ti2N | 2020/11 | NIR-I | 808 | 41.25 | 48.62 | 1.0 | 5 | 25.0-60.0 | [ |
NIR-II | 1064 | 34.92 | 45.51 | 1.0 | 5 | 25.0-60.0 |
图4 (a)Ti3C2纳米材料负载DOX用于肿瘤PTT/PDT/CHEMO联合治疗[29]、(b)DOX@Ti3C2-SP纳米材料用于肿瘤PTT/CHEMO联合治疗[32]和(c)Ti3C2@Met@CP纳米材料用于肿瘤PTT/PDT/CHEMO联合治疗[57]示意图
Fig. 4 Schematic diagrams of (a) Ti3C2 nanomaterials loaded with DOX for tumor PTT/PDT/CHEMO combined therapy[29], (b) DOX@Ti3C2-SP nanomaterials for tumor PTT/CHEMO combined therapy[32], and (c) Ti3C2@Met@CP nanomaterials for tumor PTT/PDT/CHEMO combined therapy[57] SP: Soybean phospholipid
图5 (a)DOX@Ti3C2@mMSNs-RGD复合纳米材料[58]、(b)CTAC@Nb2C-MSN-PEG-RGD复合纳米材料在PTT下释放CTAC对肿瘤的联合治疗[59]、(c)A@Nb2C@Si复合纳米材料在PTT下产生自由基[60]和(d)Nb2C-MSNs-SNO复合纳米材料在PTT下释放NO对肿瘤联合治疗[61]的示意图
Fig. 5 Schematic illustrations for (a) combined therapy on HCC cells as assisted by DOX@Ti3C2@mMSNs-RGD at the cell level[58], (b) CTAC@Nb2C-MSN-PEG-RGD composite nanomaterials releaseing CTAC under the action of PTT for combined treatment of tumor[59], (c) AIPH@Nb2C@Si composite nanomaterials generating free radicals under the action of PTT[60], and (d) Nb2C-MSNs-SNO composite nanomaterials releasing NO under the action of PTT for combined treatment of tumor[61]
图6 用于肿瘤诊疗的多功能MXenes复合纳米材料(a)MnOx/Ti3C2[64]、(b)Ta4C3-IONP[62]、(c)MIG[65]、(d)GdW10@Ti3C2[66]和(e)Ti3C2@Au[67]的模式图
Fig. 6 Schematic diagrams of (a) MnOx/Ti3C2[64], (b) Ta4C3-IONP[62], (c) MIG[65], (d) GdW10@Ti3C2[66], and (e) Ti3C2@Au[67] composite nanomaterials in tumor theranostics
MXenes | Report time | Cell lines | Treatment strategy | Diagnosis strategy | Molecule for targeting | Ref. |
---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | 4T1 | PTT | - | - | [ |
Ti3C2-SP | 2016/12 | 4T1 | PTT | - | - | [ |
MnOx/Ti3C2-SP | 2017/08 | 4T1 | PTT | PA/MR | - | [ |
Nb2C-PVP | 2017/10 | 4T1 | PTT | PA | - | [ |
Ti3C2 | 2017/10 | HeLa/MCF-7/U251/HEK293 | PTT | PA | - | [ |
Ti3C2-DOX | 2017/11 | HCT-116 | PTT/PDT/CHEMO | - | HA | [ |
MnOx/Ta4C3-SP | 2017/11 | 4T1 | PTT | MR/CT/PA | - | [ |
Ta4C3-SP | 2017/12 | 4T1 | PTT | PA/CT | - | [ |
GdW10@Ti3C2 | 2018/01 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2-SP | 2018/02 | 4T1 | PTT/CHEMO | PA | - | [ |
Ta4C3-IONP-SP | 2018/02 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2@mMSNs- RGD | 2018/04 | SMMC-7721 | PTT/CHEMO | - | RGD | [ |
CTAC@Nb2C-MSN-PEG-RGD | 2018/08 | U87 | PTT/CHEMO | PA | RGD | [ |
Ti3C2@Au | 2018/12 | 4T1 | PTT/RT | PA/CT | - | [ |
A@Nb2C@Si | 2019/01 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2C | 2019/01 | A375/HaCaT/MCF-7/MCF-10A | PTT | - | - | [ |
Mo2C | 2019/04 | 4T1 | PTT | - | - | [ |
Mo2C@C | 2019/04 | HepG2/HUVEC/IOSE80 | PTT/PDT | PA/CT | - | [ |
Au/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
Au/Fe3O4/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
MIG(Ti3C2-IONP@PEG-GOD) | 2019/10 | 4T1 | PTT/CHEMO | MR | - | [ |
Nb2C-MSNs-SNO | 2019/11 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2N | 2019/11 | MCF-7/A365/MCF-10A/HaCaT | PDT | - | - | [ |
V2C | 2020/01 | MCF-7 | PTT | - | - | [ |
TO-MX(Ti3C2/Ti2O3) | 2020/02 | A375/HaCaT/MCF-7/MCF-10A | PDT | - | - | [ |
PVP/Nb2C | 2020/04 | 4T1 | PTT | - | - | [ |
Nb2C/zein | 2020/04 | 4T1 | PTT | - | - | [ |
NMQDs-Ti3C2Tx | 2020/04 | ADSCs/HeLa/MCF-7 | PDT/CHEMO | - | - | [ |
Nb2C/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Nb4C3/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Ti3C2@Met@CP | 2020/06 | MDA-MB-231 | PTT/PDT/CHEMO | - | - | [ |
DOX@Ti3C2-CoNWs | 2020/06 | 4T1 | PTT/CHEMO | - | - | [ |
Ti3C2/CA4@PLEL | 2020/06 | 4T1/HUVECs | PTT/CHEMO | - | - | [ |
Ti2N | 2020/11 | 4T1/U87/293T | PTT | PA | - | [ |
MXene(Ti3C2)-DOX | 2021/01 | HeLa | PTT/PDT/CHEMO | - | - | [ |
表3 应用于肿瘤诊疗的MXenes
Table 3 MXenes for application in tumor theranostics
MXenes | Report time | Cell lines | Treatment strategy | Diagnosis strategy | Molecule for targeting | Ref. |
---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | 4T1 | PTT | - | - | [ |
Ti3C2-SP | 2016/12 | 4T1 | PTT | - | - | [ |
MnOx/Ti3C2-SP | 2017/08 | 4T1 | PTT | PA/MR | - | [ |
Nb2C-PVP | 2017/10 | 4T1 | PTT | PA | - | [ |
Ti3C2 | 2017/10 | HeLa/MCF-7/U251/HEK293 | PTT | PA | - | [ |
Ti3C2-DOX | 2017/11 | HCT-116 | PTT/PDT/CHEMO | - | HA | [ |
MnOx/Ta4C3-SP | 2017/11 | 4T1 | PTT | MR/CT/PA | - | [ |
Ta4C3-SP | 2017/12 | 4T1 | PTT | PA/CT | - | [ |
GdW10@Ti3C2 | 2018/01 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2-SP | 2018/02 | 4T1 | PTT/CHEMO | PA | - | [ |
Ta4C3-IONP-SP | 2018/02 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2@mMSNs- RGD | 2018/04 | SMMC-7721 | PTT/CHEMO | - | RGD | [ |
CTAC@Nb2C-MSN-PEG-RGD | 2018/08 | U87 | PTT/CHEMO | PA | RGD | [ |
Ti3C2@Au | 2018/12 | 4T1 | PTT/RT | PA/CT | - | [ |
A@Nb2C@Si | 2019/01 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2C | 2019/01 | A375/HaCaT/MCF-7/MCF-10A | PTT | - | - | [ |
Mo2C | 2019/04 | 4T1 | PTT | - | - | [ |
Mo2C@C | 2019/04 | HepG2/HUVEC/IOSE80 | PTT/PDT | PA/CT | - | [ |
Au/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
Au/Fe3O4/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
MIG(Ti3C2-IONP@PEG-GOD) | 2019/10 | 4T1 | PTT/CHEMO | MR | - | [ |
Nb2C-MSNs-SNO | 2019/11 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2N | 2019/11 | MCF-7/A365/MCF-10A/HaCaT | PDT | - | - | [ |
V2C | 2020/01 | MCF-7 | PTT | - | - | [ |
TO-MX(Ti3C2/Ti2O3) | 2020/02 | A375/HaCaT/MCF-7/MCF-10A | PDT | - | - | [ |
PVP/Nb2C | 2020/04 | 4T1 | PTT | - | - | [ |
Nb2C/zein | 2020/04 | 4T1 | PTT | - | - | [ |
NMQDs-Ti3C2Tx | 2020/04 | ADSCs/HeLa/MCF-7 | PDT/CHEMO | - | - | [ |
Nb2C/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Nb4C3/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Ti3C2@Met@CP | 2020/06 | MDA-MB-231 | PTT/PDT/CHEMO | - | - | [ |
DOX@Ti3C2-CoNWs | 2020/06 | 4T1 | PTT/CHEMO | - | - | [ |
Ti3C2/CA4@PLEL | 2020/06 | 4T1/HUVECs | PTT/CHEMO | - | - | [ |
Ti2N | 2020/11 | 4T1/U87/293T | PTT | PA | - | [ |
MXene(Ti3C2)-DOX | 2021/01 | HeLa | PTT/PDT/CHEMO | - | - | [ |
图7 MXenes纳米材料在(a)生物传感[81]和(b)骨组织工程中的应用示意图[82]
Fig. 7 Schematic diagrams of the application of MXenes nanomaterials in (a) biosensing[81] and (b) bone tissue engineering[82]
[1] |
PENG X, PENG L, WU C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43(10): 3303-3323.
DOI URL |
[2] |
GUO Z, OUYANG J, KIM N Y, et al. Emerging two-dimensional nanomaterials for cancer therapy. ChemPhysChem, 2019, 20(19): 2417-2433.
DOI URL |
[3] |
BALANDIN A A. Phononics of graphene and related materials. ACS Nano, 2020, 14(5): 5170-5178.
DOI URL |
[4] |
WANG T, ZHANG X, MEI L, et al. A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 2020, 12(15): 8415-8424.
DOI URL |
[5] |
CUI D, PEREPICHKA D F, MACLEOD J M, et al. Surface- confined single-layer covalent organic frameworks: design, synthesis and application. Chemical Society Reviews, 2020, 49(7): 2020-2038.
DOI URL |
[6] |
ZHANG R, DING Q, ZHANG S, et al. Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear. Nanoscale, 2019, 11(26): 12553-12562.
DOI URL |
[7] |
WANG Q, ASTRUC D. State of the art and prospects in metal- organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020, 120(2): 1438-1511.
DOI URL |
[8] | LI J, SONG Y, WANG Y, et al. Ultrafine PdCu nanoclusters by ultrasonic-assisted reduction on the LDHs/rGO hybrid with significantly enhanced heck reactivity. ACS Applied Materials & Interfaces, 2020, 12(45): 50365-50376. |
[9] |
LI X, LI X, YANG J. Room-temperature ferromagnetism in transition metal embedded borophene nanosheets. Journal of Physical Chemistry Letters, 2019, 10(15): 4417-4421.
DOI URL |
[10] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two- dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2020, 35(1): 1-7. |
[11] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248-4253.
DOI URL |
[12] |
KUMAR S, LEI Y, ALSHAREEF N H, et al. Biofunctionalized two-dimensional Ti3C2MXenes for ultrasensitive detection of cancer biomarker. Biosensors and Bioelectronics, 2018, 121: 243-249.
DOI URL |
[13] |
GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-polymer composites for various biomedical applications. Ceramics International, 2020, 46(7): 8522-8535.
DOI URL |
[14] |
GOGOTSI Y, ANASORI B. The rise of MXenes. ACS Nano, 2019, 13(8): 8491-8494.
DOI URL |
[15] | JIANG H, WANG Z, DONG L, et al. Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 2020, 353: 136607-1-9. |
[16] | LEVITT A, ZHANG J, DION G, et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Advanced Functional Materials, 2020, 30(47): 2000739-1-22. |
[17] |
ZHANG Q, YI G, FU Z, et al. Vertically aligned Janus MXene- based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196-13207.
DOI URL |
[18] |
ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455.
DOI URL |
[19] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385-11391.
DOI URL |
[20] | LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic- interference shielding. Advanced Materials, 2017, 29(38): 1702367-1-6. |
[21] | LI Y, TIAN X, GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Advanced Functional Materials, 2019, 30(5): 1907451-1-12. |
[22] |
ZHU S, FENG Y, LI X, et al. Two-dimensional titanium carbide (Ti3C2) MXene towards enhancing thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Canadian Journal of Chemistry, 2020, 98(11): 697-700.
DOI URL |
[23] | ZHANG H, WANG Z, WANG F, et al. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta, 2021, 224: 121879-1-7. |
[24] | LIU L, YAO Y, MA K, et al. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensors and Actuators B: Chemical, 2021, 331: 129470-1-9. |
[25] |
CHENG J, HU K, LIU Q, et al. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Analytical and Bioanalytical Chemistry, 2021, 413(9): 2543-2551.
DOI URL |
[26] | MA B K, LI M, CHEONG L Z, et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 2020, 35(1): 131-138. |
[27] |
DAI C, CHEN Y, JING X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano, 2017, 11(12): 12696-12712.
DOI URL |
[28] |
LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.
DOI URL |
[29] |
LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces, 2017, 9(46): 40077-40086.
DOI URL |
[30] |
LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 2017, 17(1): 384-391.
DOI URL |
[31] | GAZZI A, FUSCO L, KHAN A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Frontiers in Bioengineering and Biotechnology, 2019, 7: 295-1-15. |
[32] | HAN X, HUANG J, LIN H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 2018, 7(9): 1701394-1-13. |
[33] |
LI Z, YU L, YANG T, et al. Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 2018, 61(10): 1243-1260.
DOI URL |
[34] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2(2): 16098-1-17. |
[35] | SOLEYMANIHA M, SHAHBAZI M A, RAFIEERAD A R, et al. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Advanced Healthcare Materials, 2019, 8(1): 1801137-1-26. |
[36] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78-81.
DOI URL |
[37] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 2014, 26(7): 2374-2381.
DOI URL |
[38] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19(8): 894-899.
DOI URL |
[39] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119.
DOI URL |
[40] |
HUANG Z, CUI X, LI S, et al. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 2020, 9(8): 2233-2249.
DOI URL |
[41] |
XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14(11): 1135-1141.
DOI URL |
[42] |
SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Computational Materials Science, 2012, 65: 104-114.
DOI URL |
[43] |
SHEIN I R, IVANOVSKII A L. Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations. Superlattices and Microstructures, 2012, 52(2): 147-157.
DOI URL |
[44] |
KURTOGLU M, NAGUIB M, GOGOTSI Y, et al. First principles study of two-dimensional early transition metal carbides. MRS Communications, 2012, 2(4): 133-137.
DOI URL |
[45] | XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2020, 30(47): 2000712-1-21. |
[46] |
CHENG Y, YANG F, XIANG G, et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy. Nano Letters, 2019, 19(2): 1179-1189.
DOI URL |
[47] | ZHOU Y, FENG W, QIAN X, et al. Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Applied Materials & Interfaces, 2019, 11(22): 19712-19723. |
[48] | SZUPLEWSKA A, KULPINSKA D, DYBKO A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 2019, 98: 874-886. |
[49] | FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 2019, 29(22): 1901942-1-15. |
[50] |
ZADA S, DAI W, KAI Z, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angewandte Chemie International Edition, 2020, 59(16): 6601-6606.
DOI URL |
[51] | SHAO J, ZHANG J, JIANG C, et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 2020, 400: 126009-1-12. |
[52] | ZHANG Q, GUO Q, CHEN Q, et al. Highly efficient 2D NIR-II photothermal agent with fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy. Advanced Science, 2020, 7(7): 1902576-1-10. |
[53] |
ZHANG D Y, XU H, HE T, et al. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale, 2020, 12(13): 7174-7179.
DOI URL |
[54] |
XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie International Edition, 2016, 55(47): 14569-14574.
DOI URL |
[55] |
DONG L, YE C, ZHENG L, et al. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics, 2020, 9(8): 2125-2145.
DOI URL |
[56] |
SUNDARAM A, PONRAJ J S, WANG C, et al. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8(23): 4990-5013.
DOI URL |
[57] |
BAI L, YI W, SUN T, et al. Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. Journal of Materials Chemistry B, 2020, 8(30): 6402-6417.
DOI URL |
[58] | LI Z, ZHANG H, HAN J, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 2018, 30(25): 1706981-1-11. |
[59] |
HAN X, JING X, YANG D, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo- photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8(16): 4491-4508.
DOI URL |
[60] | XIANG H, LIN H, YU L, et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano, 2019, 13(2): 2223-2235. |
[61] | YIN H, GUAN X, LIN H, et al. Nanomedicine-enabled photonic thermogaseous cancer therapy. Advanced Science, 2020, 7(2): 1901954-1-12. |
[62] |
LIU Z, LIN H, ZHAO M, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 2018, 8(6): 1648-1664.
DOI URL |
[63] |
WANG Y, FENG W, CHEN Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31(4): 937-946.
DOI URL |
[64] |
DAI C, LIN H, XU G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chemistry of Materials, 2017, 29(20): 8637-8652.
DOI URL |
[65] | LIANG R, LI Y, HUO M, et al. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(46): 42917-42931. |
[66] |
ZONG L, WU H, LIN H, et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 2018, 11(8): 4149-4168.
DOI URL |
[67] |
TANG W, DONG Z, ZHANG R, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano, 2019, 13(1): 284-294.
DOI URL |
[68] |
YU X, CAI X, CUI H, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9(45): 17859-17864.
DOI URL |
[69] |
LIN H, WANG Y, GAO S, et al. Theranostic 2D tantalum carbide (MXene). Advanced Materials, 2018, 30(4):1703284.
DOI URL |
[70] |
ZHANG Q, HUANG W, YANG C, et al. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomaterials Science, 2019, 7(7): 2729-2739.
DOI URL |
[71] |
HUSSEIN E A, ZAGHO M M, RIZEQ B R, et al. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. International Journal of Nanomedicine, 2019, 14: 4529-4539.
DOI URL |
[72] | SZUPLEWSKA A, WOJCIECHOWSKA A, POZNIAK S, et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. Journal of Nanobiotechnology, 2019, 17(1): 114-1-14. |
[73] | JASTRZĘBSKA A M, SZUPLEWSKA A, WOJCIECHOWSKA A, et al. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7(2): 025018-1-12. |
[74] |
LIN S, LIN H, YANG M, et al. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 2020, 12(18): 10265-10276.
DOI URL |
[75] |
ZHOU B, PU Y, LIN H, et al. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. Journal of Materials Chemistry B, 2020, 8(24): 5257-5266.
DOI URL |
[76] | LI X, LIU F, HUANG D, et al. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Advanced Functional Materials, 2020, 30(24): 2000308-1-10. |
[77] | JASTRZĘBSKA A M, SZUPLEWSKA A, WOJCIECHOWSKA A, et al. Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7942-7951. |
[78] | LIU Y, HAN Q, YANG W, et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 2020, 116: 111212-1-11. |
[79] | TAO N, LIU Y, WU Y, et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption. ACS Applied Biomaterials, 2020, 3(7): 4531-4542. |
[80] | GUO Y, WANG H, FENG X, et al. 3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic /chemo combination therapy. Nanotechnology, 2021, 32(19): 195701-1-11. |
[81] |
ZHOU S, GU C, LI Z, et al. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498: 143889.
DOI URL |
[82] | YIN J, PAN S, GUO X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/ osteogenesis of bone defects. Nano-Micro Letters, 2021, 13(1): 30-1-18. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||